fasd / app.py
ozyman's picture
fixed video
952b15c
raw
history blame
10.9 kB
import subprocess
subprocess.run(["sh", "tddfa/build.sh"])
import gradio as gr
from gradio.components import Dropdown
import cv2 as cv
import torch
from torchvision import transforms
from DeePixBiS.Model import DeePixBiS
import yaml
import numpy as np
import pandas as pd
from skimage.io import imread, imsave
# from tddfa.TDDFA import TDDFA
from tddfa.utils.depth import depth
from tddfa.TDDFA_ONNX import TDDFA_ONNX
import torch.optim as optim
from DSDG.DUM.models.CDCNs_u import Conv2d_cd, CDCN_u
import io
import uuid
import numpy as np
from PIL import Image
import boto3
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
os.environ['OMP_NUM_THREADS'] = '4'
os.environ['AWS_ACCESS_KEY_ID'] = 'AKIA3JAMX4K53MFDKMGJ'
os.environ['AWS_SECRET_ACCESS_KEY'] = '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'
app_version = 'dsdg_vid_1'
device = torch.device("cpu")
labels = ['Live', 'Spoof']
PIX_THRESHOLD = 0.45
DSDG_THRESHOLD = 0.5
MIN_FACE_WIDTH_THRESHOLD = 210
examples = [
['examples/1_1_21_2_33_scene_fake.jpg'],
['examples/frame150_real.jpg'],
['examples/1_2.avi_125_real.jpg'],
['examples/1_3.avi_25_fake.jpg']]
faceClassifier = cv.CascadeClassifier('./DeePixBiS/Classifiers/haarface.xml')
tfms = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
deepix_model = DeePixBiS(pretrained=False)
deepix_model.load_state_dict(torch.load('./DeePixBiS/DeePixBiS.pth'))
deepix_model.eval()
depth_config_path = 'tddfa/configs/mb1_120x120.yml' # 'tddfa/configs/mb1_120x120.yml
cfg = yaml.load(open(depth_config_path), Loader=yaml.SafeLoader)
tddfa = TDDFA_ONNX(gpu_mode=False, **cfg)
cdcn_model = CDCN_u(basic_conv=Conv2d_cd, theta=0.7)
cdcn_model = cdcn_model.to(device)
weights = torch.load('./DSDG/DUM/checkpoint/CDCN_U_P1_updated.pkl', map_location=device)
cdcn_model.load_state_dict(weights)
optimizer = optim.Adam(cdcn_model.parameters(), lr=0.001, weight_decay=0.00005)
cdcn_model.eval()
class Normaliztion_valtest(object):
"""
same as mxnet, normalize into [-1, 1]
image = (image - 127.5)/128
"""
def __call__(self, image_x):
image_x = (image_x - 127.5) / 128 # [-1,1]
return image_x
def prepare_data_dsdg(images, boxes, depths):
transform = transforms.Compose([Normaliztion_valtest()])
files_total = 1
image_x = np.zeros((files_total, 256, 256, 3))
depth_x = np.ones((files_total, 32, 32))
for i, (image, bbox, depth_img) in enumerate(
zip(images, boxes, depths)):
x, y, x2, y2 = bbox
depth_img = cv.cvtColor(depth_img, cv.COLOR_RGB2GRAY)
image = image[y:y2, x:x2]
depth_img = depth_img[y:y2, x:x2]
image_x[i, :, :, :] = cv.resize(image, (256, 256))
# transform to binary mask --> threshold = 0
depth_x[i, :, :] = cv.resize(depth_img, (32, 32))
image_x = image_x.transpose((0, 3, 1, 2))
image_x = transform(image_x)
image_x = torch.from_numpy(image_x.astype(float)).float()
depth_x = torch.from_numpy(depth_x.astype(float)).float()
return image_x, depth_x
def find_largest_face(faces):
# find the largest face in the list
largest_face = None
largest_area = 0
for face in faces:
x, y, w, h = face
area = w * h
if area > largest_area:
largest_area = area
largest_face = face
return largest_face
def extract_face(img):
face = None
if img is None:
return face
grey = cv.cvtColor(img, cv.COLOR_RGB2GRAY)
faces = faceClassifier.detectMultiScale(
grey, scaleFactor=1.1, minNeighbors=4)
if len(faces):
face = find_largest_face(faces)
return face
def deepix_model_inference(img, bbox):
x, y, x2, y2 = bbox
faceRegion = img[y:y2, x:x2]
faceRegion = tfms(faceRegion)
faceRegion = faceRegion.unsqueeze(0)
mask, binary = deepix_model.forward(faceRegion)
res_deepix = torch.mean(mask).item()
cls_deepix = 'Real' if res_deepix >= PIX_THRESHOLD else 'Spoof'
confidences_deepix = {'Real confidence': res_deepix}
color_deepix = (0, 255, 0) if cls_deepix == 'Real' else (255, 0, 0)
img_deepix = cv.rectangle(img.copy(), (x, y), (x2, y2), color_deepix, 2)
cv.putText(img_deepix, cls_deepix, (x, y2 + 30),
cv.FONT_HERSHEY_COMPLEX, 1, color_deepix)
cls_deepix = 1 if cls_deepix == 'Real' else 0
return img_deepix, confidences_deepix, cls_deepix
def dsdg_model_inference(img, bbox, dsdg_thresh):
dsdg_thresh = dsdg_thresh / 10000
dense_flag = True
x, y, x2, y2 = bbox
w = x2 - x
h = y2 - y
if w < MIN_FACE_WIDTH_THRESHOLD:
color_dsdg = (0, 0, 0)
text = f'Small res ({w}*{h})'
img_dsdg = cv.rectangle(img.copy(), (x, y), (x2, y2), color_dsdg, 2)
cv.putText(img_dsdg, text, (x, y2 + 30),
cv.FONT_HERSHEY_COMPLEX, 1, color_dsdg)
cls_dsdg = -1
return img_dsdg, {}, cls_dsdg
bbox_conf = list(bbox)
bbox_conf.append(1)
param_lst, roi_box_lst = tddfa(img, [bbox_conf])
ver_lst = tddfa.recon_vers(param_lst, roi_box_lst, dense_flag=dense_flag)
depth_img = depth(img, ver_lst, tddfa.tri, with_bg_flag=False)
with torch.no_grad():
map_score_list = []
image_x, map_x = prepare_data_dsdg([img], [list(bbox)], [depth_img])
# get the inputs
image_x = image_x.unsqueeze(0)
map_x = map_x.unsqueeze(0)
inputs = image_x.to(device)
test_maps = map_x.to(device)
optimizer.zero_grad()
map_score = 0.0
for frame_t in range(inputs.shape[1]):
mu, logvar, map_x, x_concat, x_Block1, x_Block2, x_Block3, x_input = cdcn_model(inputs[:, frame_t, :, :, :])
score_norm = torch.sum(mu) / torch.sum(test_maps[:, frame_t, :, :])
map_score += score_norm
map_score = map_score / inputs.shape[1]
map_score_list.append(map_score)
res_dsdg = map_score_list[0].item()
if res_dsdg > 10:
res_dsdg = 0.0
cls_dsdg = 'Real' if res_dsdg >= dsdg_thresh else 'Spoof'
text = f'{cls_dsdg} {w}*{h}'
confidences_dsdg = {'Real confidence': res_dsdg}
color_dsdg = (0, 255, 0) if cls_dsdg == 'Real' else (255, 0, 0)
img_dsdg = cv.rectangle(img.copy(), (x, y), (x2, y2), color_dsdg, 2)
cv.putText(img_dsdg, text, (x, y2 + 30),
cv.FONT_HERSHEY_COMPLEX, 1, color_dsdg)
res_dsdg = res_dsdg * 1000000
# cls_dsdg = 1 if cls_dsdg == 'Real' else 0
return img_dsdg, confidences_dsdg, res_dsdg
def inference(img, dsdg_thresh):
face = extract_face(img)
if face is not None:
x, y, w, h = face
x2 = x + w
y2 = y + h
bbox = (x, y, x2, y2)
# img_deepix, confidences_deepix, cls_deepix = deepix_model_inference(img, bbox)
img_dsdg, confidences_dsdg, cls_dsdg = dsdg_model_inference(img, bbox, dsdg_thresh)
return img, {}, 2, img_dsdg, confidences_dsdg, cls_dsdg
else:
return img, {}, None, img, {}, None
def process_video(vid_path, dsdg_thresh):
cap = cv.VideoCapture(vid_path)
input_width = int(cap.get(cv.CAP_PROP_FRAME_WIDTH))
input_height = int(cap.get(cv.CAP_PROP_FRAME_HEIGHT))
# Set video codec and create VideoWriter object to save the output video
fourcc = cv.VideoWriter_fourcc(*'mp4v')
output_vid_path = 'output_dsdg.mp4'
out_dsdg = cv.VideoWriter(output_vid_path, fourcc, 20.0, (input_width, input_height))
frame_counter = 0
confidences_arr = []
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Process only every 5th frame
if frame_counter % 5 == 0:
# Run inference on the current frame
_, _, _, img_dsdg, confidences_dsdg, res_dsdg = inference(frame, dsdg_thresh)
if res_dsdg == -1:
continue
confidences_arr.append(res_dsdg)
# Write the DSDG frame to the output video
out_dsdg.write(img_dsdg)
frame_counter += 1
# Release resources
cap.release()
out_dsdg.release()
if not confidences_arr:
return vid_path, {'Not supported right now': 0}, -1, vid_path, 'Faces too small or not found', -1
avg_conf = sum(confidences_arr) / len(confidences_arr)
text_dsdg = f'Average real confidence: {avg_conf}\nFrames used: {len(confidences_arr)}\nConfidences:{confidences_arr}'
return vid_path, {'Not supported right now': 0}, -1, output_vid_path, text_dsdg, avg_conf
def upload_to_s3(vid_path, app_version, *labels):
folder = 'demo'
bucket_name = 'livenessng'
if vid_path is None:
return 'Error. Take a photo first.'
elif labels[-2] == -2:
return 'Error. Run the detection first.'
elif labels[0] is None:
return 'Error. Select the true label first.'
elif labels[0] == 2:
labels[0] = -1
# Initialize S3 client
s3 = boto3.client('s3')
# Encode labels and app version in video file name
encoded_labels = '_'.join([str(int(label)) for label in labels])
random_string = str(uuid.uuid4()).split('-')[-1]
video_name = f"{folder}/{app_version}/{encoded_labels}_{random_string}.mp4"
# Upload video to S3
with open(vid_path, 'rb') as video_file:
res = s3.upload_fileobj(video_file, bucket_name, video_name)
# Return the S3 URL of the uploaded video
status = 'Successfully uploaded'
return status
demo = gr.Blocks()
with demo:
with gr.Row():
with gr.Column():
input_vid = gr.Video(format='mp4', source='webcam')
dsdg_thresh = gr.Slider(value=DSDG_THRESHOLD, label='DSDG threshold', maximum=3.0, step=0.05)
btn_run = gr.Button(value="Run")
with gr.Column():
outputs=[
gr.Video(label='DeePixBiS', format='mp4'),
gr.Label(num_top_classes=2, label='DeePixBiS'),
gr.Number(visible=False, value=-2),
gr.Video(label='DSDG', format='mp4'),
gr.Textbox(label='DSDG'),
gr.Number(visible=False, value=-2)]
with gr.Column():
radio = gr.Radio(
["Spoof", "Real", "None"], label="True label", type='index')
flag = gr.Button(value="Flag")
status = gr.Textbox()
# example_block = gr.Examples(examples, [input_vid], outputs)
btn_run.click(process_video, [input_vid, dsdg_thresh], outputs)
app_version_block = gr.Textbox(value=app_version, visible=False)
flag.click(
upload_to_s3,
[input_vid, app_version_block, radio]+[outputs[2], outputs[5]],
[status], show_progress=True)
if __name__ == '__main__':
demo.queue(concurrency_count=2)
demo.launch(share=False)