|
import gradio as gr |
|
from gradio.components import Dropdown |
|
|
|
import cv2 as cv |
|
import torch |
|
from torchvision import transforms |
|
from DeePixBiS.Model import DeePixBiS |
|
|
|
import yaml |
|
import numpy as np |
|
import pandas as pd |
|
from skimage.io import imread, imsave |
|
|
|
from tddfa.utils.depth import depth |
|
from tddfa.TDDFA_ONNX import TDDFA_ONNX |
|
|
|
import os |
|
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True' |
|
os.environ['OMP_NUM_THREADS'] = '4' |
|
|
|
labels = ['Live', 'Spoof'] |
|
thresh = 0.45 |
|
examples = [ |
|
['examples/1_1_21_2_33_scene_fake.jpg', "DeePixBiS"], |
|
['examples/frame150_real.jpg', "DeePixBiS"], |
|
['examples/1_2.avi_125_real.jpg', "DeePixBiS"], |
|
['examples/1_3.avi_25_fake.jpg', "DeePixBiS"]] |
|
device = torch.device("cpu") |
|
faceClassifier = cv.CascadeClassifier('./DeePixBiS/Classifiers/haarface.xml') |
|
tfms = transforms.Compose([ |
|
transforms.ToPILImage(), |
|
transforms.Resize((224, 224)), |
|
transforms.ToTensor(), |
|
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) |
|
]) |
|
model = DeePixBiS(pretrained=False) |
|
model.load_state_dict(torch.load('./DeePixBiS/DeePixBiS.pth')) |
|
model.eval() |
|
|
|
cfg = yaml.load(open('tddfa/configs/mb1_120x120.yml'), Loader=yaml.SafeLoader) |
|
tddfa = TDDFA_ONNX(gpu_mode=False, **cfg) |
|
|
|
def find_largest_face(faces): |
|
largest_face = None |
|
largest_area = 0 |
|
|
|
for (x, y, w, h) in faces: |
|
area = w * h |
|
if area > largest_area: |
|
largest_area = area |
|
largest_face = (x, y, w, h) |
|
return largest_face |
|
|
|
def inference(img, model_name): |
|
confidences = {} |
|
grey = cv.cvtColor(img, cv.COLOR_BGR2GRAY) |
|
faces = faceClassifier.detectMultiScale( |
|
grey, scaleFactor=1.1, minNeighbors=4) |
|
face = find_largest_face(faces) |
|
|
|
if face is not None: |
|
x, y, w, h = face |
|
faceRegion = img[y:y + h, x:x + w] |
|
faceRegion = cv.cvtColor(faceRegion, cv.COLOR_BGR2RGB) |
|
faceRegion = tfms(faceRegion) |
|
faceRegion = faceRegion.unsqueeze(0) |
|
|
|
if model_name == 'DeePixBiS': |
|
mask, binary = model.forward(faceRegion) |
|
res = torch.mean(mask).item() |
|
if res < thresh: |
|
cls = 'Spoof' |
|
color = (0, 0, 255) |
|
res = 1 - res |
|
else: |
|
cls = 'Real' |
|
color = (0, 255, 0) |
|
|
|
else: |
|
dense_flag = True |
|
boxes = list(face) |
|
boxes.append(1) |
|
param_lst, roi_box_lst = tddfa(img, [boxes]) |
|
|
|
ver_lst = tddfa.recon_vers(param_lst, roi_box_lst, dense_flag=dense_flag) |
|
img = depth(img, ver_lst, tddfa.tri, with_bg_flag=False) |
|
cls = 'Other' |
|
res = 0.5 |
|
color = (0, 0, 255) |
|
|
|
label = f'{cls} {res:.2f}' |
|
confidences = {label: res} |
|
cv.rectangle(img, (x, y), (x + w, y + h), color, 2) |
|
cv.putText(img, label, (x, y + h + 30), |
|
cv.FONT_HERSHEY_COMPLEX, 1, color) |
|
|
|
return img, confidences |
|
|
|
|
|
if __name__ == '__main__': |
|
demo = gr.Interface( |
|
fn=inference, |
|
inputs=[gr.Image(source='webcam', shape=None, type='numpy'), |
|
Dropdown(["DeePixBiS", "DSDG"], value="DeePixBiS")], |
|
outputs=["image", gr.Label(num_top_classes=2)], |
|
examples=examples).queue(concurrency_count=2) |
|
demo.launch(share=False) |
|
|