Spaces:
Sleeping
Sleeping
DJOMGA TOUKO Peter Charles
commited on
Commit
·
865ba19
1
Parent(s):
2eac26d
fix bug on managin cursor description
Browse files- app.py +13 -8
- app_access_db.py +8 -4
- app_config.py +1 -0
- openai-business-chat-06-utilitaire.ipynb +403 -0
app.py
CHANGED
@@ -6,6 +6,9 @@ from app_access_db import *
|
|
6 |
|
7 |
# model = "gpt-3.5-turbo"
|
8 |
model = "gpt-4-turbo"
|
|
|
|
|
|
|
9 |
|
10 |
# ------------------------------------------------------------------------------------------------
|
11 |
# SIDEBAR
|
@@ -50,14 +53,15 @@ def submit_openai_key(model=model):
|
|
50 |
st.sidebar.write('Please provide the key before')
|
51 |
return
|
52 |
else:
|
53 |
-
client = OpenAI(api_key=openai_key)
|
54 |
model = model
|
55 |
completion = client.chat.completions.create(
|
56 |
model=model,
|
57 |
messages=[
|
58 |
-
{"role": "system", "content": "You are an assistant giving simple and short answer for question of child"},
|
59 |
{"role": "user", "content": "count from 0 to 10"}
|
60 |
-
]
|
|
|
61 |
)
|
62 |
st.sidebar.write(f'Simple count : {completion.choices[0].message.content}')
|
63 |
|
@@ -78,14 +82,15 @@ def askQuestion(model=model, question=''):
|
|
78 |
print('Please provide the key before')
|
79 |
return 'LLM API is not defined. Please provide the key before'
|
80 |
else:
|
81 |
-
client = OpenAI(api_key=openai_key)
|
82 |
model = model
|
83 |
completion = client.chat.completions.create(
|
84 |
model=model,
|
85 |
messages=[
|
86 |
{"role": "system", "content": f'{query_context}'},
|
87 |
{"role": "user", "content": f'{question}'}
|
88 |
-
]
|
|
|
89 |
)
|
90 |
return completion.choices[0].message.content
|
91 |
|
@@ -103,7 +108,7 @@ def displayAssistantMessage( assistantMessage: AssistantMessage):
|
|
103 |
if assistantMessage.response_data.columns.size == 2:
|
104 |
st.bar_chart(assistantMessage.response_data, x=assistantMessage.response_data.columns[0], y=assistantMessage.response_data.columns[1])
|
105 |
if assistantMessage.response_data.columns.size == 1:
|
106 |
-
st.metric(label=assistantMessage.response_data.columns[0], value=f'{assistantMessage.response_data.values[0]}')
|
107 |
|
108 |
|
109 |
|
@@ -129,10 +134,10 @@ if prompt := st.chat_input("What is up?"):
|
|
129 |
|
130 |
response = askQuestion(question=prompt)
|
131 |
# st.code(response, language='sql')
|
132 |
-
response_data = run_query(response)
|
133 |
# Display assistant response in chat message container
|
134 |
assistanMsg = AssistantMessage()
|
135 |
-
assistanMsg.sql = response
|
136 |
assistanMsg.response_data = response_data
|
137 |
displayAssistantMessage(assistanMsg)
|
138 |
# with st.chat_message("assistant"):
|
|
|
6 |
|
7 |
# model = "gpt-3.5-turbo"
|
8 |
model = "gpt-4-turbo"
|
9 |
+
gpt_base_url = None
|
10 |
+
# model = "lmstudio-community/Meta-Llama-3-8B-Instruct-GGUF"
|
11 |
+
# gpt_base_url = "http://localhost:1234/v1/"
|
12 |
|
13 |
# ------------------------------------------------------------------------------------------------
|
14 |
# SIDEBAR
|
|
|
53 |
st.sidebar.write('Please provide the key before')
|
54 |
return
|
55 |
else:
|
56 |
+
client = OpenAI(api_key=openai_key, base_url=gpt_base_url)
|
57 |
model = model
|
58 |
completion = client.chat.completions.create(
|
59 |
model=model,
|
60 |
messages=[
|
61 |
+
{"role": "system", "content": "You are an assistant giving simple and short answer for question of child. No questions, and no explanations"},
|
62 |
{"role": "user", "content": "count from 0 to 10"}
|
63 |
+
],
|
64 |
+
temperature=0
|
65 |
)
|
66 |
st.sidebar.write(f'Simple count : {completion.choices[0].message.content}')
|
67 |
|
|
|
82 |
print('Please provide the key before')
|
83 |
return 'LLM API is not defined. Please provide the key before'
|
84 |
else:
|
85 |
+
client = OpenAI(api_key=openai_key, base_url=gpt_base_url)
|
86 |
model = model
|
87 |
completion = client.chat.completions.create(
|
88 |
model=model,
|
89 |
messages=[
|
90 |
{"role": "system", "content": f'{query_context}'},
|
91 |
{"role": "user", "content": f'{question}'}
|
92 |
+
],
|
93 |
+
temperature=0
|
94 |
)
|
95 |
return completion.choices[0].message.content
|
96 |
|
|
|
108 |
if assistantMessage.response_data.columns.size == 2:
|
109 |
st.bar_chart(assistantMessage.response_data, x=assistantMessage.response_data.columns[0], y=assistantMessage.response_data.columns[1])
|
110 |
if assistantMessage.response_data.columns.size == 1:
|
111 |
+
st.metric(label=assistantMessage.response_data.columns[0], value=f'{assistantMessage.response_data.values[0][0]}')
|
112 |
|
113 |
|
114 |
|
|
|
134 |
|
135 |
response = askQuestion(question=prompt)
|
136 |
# st.code(response, language='sql')
|
137 |
+
response_data = run_query(response.replace('```',''))
|
138 |
# Display assistant response in chat message container
|
139 |
assistanMsg = AssistantMessage()
|
140 |
+
assistanMsg.sql = response.replace('```','')
|
141 |
assistanMsg.response_data = response_data
|
142 |
displayAssistantMessage(assistanMsg)
|
143 |
# with st.chat_message("assistant"):
|
app_access_db.py
CHANGED
@@ -5,19 +5,23 @@ DB_FILENAME = 'irembo_application_4.db'
|
|
5 |
|
6 |
|
7 |
def run_query(query=''):
|
8 |
-
|
|
|
|
|
9 |
conn = sqlite3.connect(DB_FILENAME)
|
10 |
cursor = conn.cursor()
|
11 |
-
cursor.execute(
|
12 |
#data = cursor.fetchall()
|
13 |
#print(data)
|
14 |
#conn.close()
|
15 |
-
|
|
|
16 |
df = DataFrame(cursor.fetchall())
|
|
|
17 |
df.columns = [i[0] for i in cursor.description]
|
18 |
|
19 |
# print(f'Field Names : {field_names}')
|
20 |
-
|
21 |
print(df.head())
|
22 |
conn.close()
|
23 |
return df
|
|
|
5 |
|
6 |
|
7 |
def run_query(query=''):
|
8 |
+
|
9 |
+
clean_query = query.replace('```','')
|
10 |
+
print(f"clean_query \n {clean_query}")
|
11 |
conn = sqlite3.connect(DB_FILENAME)
|
12 |
cursor = conn.cursor()
|
13 |
+
cursor.execute(clean_query)
|
14 |
#data = cursor.fetchall()
|
15 |
#print(data)
|
16 |
#conn.close()
|
17 |
+
print(f"Cursor Description \n {cursor.description}")
|
18 |
+
|
19 |
df = DataFrame(cursor.fetchall())
|
20 |
+
print(df.head())
|
21 |
df.columns = [i[0] for i in cursor.description]
|
22 |
|
23 |
# print(f'Field Names : {field_names}')
|
24 |
+
|
25 |
print(df.head())
|
26 |
conn.close()
|
27 |
return df
|
app_config.py
CHANGED
@@ -41,5 +41,6 @@ CREATE TABLE service (
|
|
41 |
|
42 |
Important, The query should be in SQLite format
|
43 |
Important, Your response should be only the SQL script in SQLite format with no comment and no explanation.
|
|
|
44 |
|
45 |
"""
|
|
|
41 |
|
42 |
Important, The query should be in SQLite format
|
43 |
Important, Your response should be only the SQL script in SQLite format with no comment and no explanation.
|
44 |
+
Important, the output should be in text that can be executed directly wihtout any transformation. Don't return Markdown format
|
45 |
|
46 |
"""
|
openai-business-chat-06-utilitaire.ipynb
CHANGED
@@ -0,0 +1,403 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 85,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"table_application = \"\"\"\n",
|
10 |
+
" CREATE TABLE application (\n",
|
11 |
+
" application_id int,\n",
|
12 |
+
" application_number varchar(10),\n",
|
13 |
+
" amount int,\n",
|
14 |
+
" amount_paid int,\n",
|
15 |
+
" state varchar(10),\n",
|
16 |
+
" office_code varchar(10), \n",
|
17 |
+
" service_code varchar(10), \n",
|
18 |
+
" date_created datetime,\n",
|
19 |
+
" date_paid datetime,\n",
|
20 |
+
" date_processed datetime,\n",
|
21 |
+
" PRIMARY KEY (application_id)\n",
|
22 |
+
" );\n",
|
23 |
+
"\"\"\"\n",
|
24 |
+
"\n",
|
25 |
+
"table_office =\"\"\"\n",
|
26 |
+
" CREATE TABLE Office (\n",
|
27 |
+
" office_code varchar(10),\n",
|
28 |
+
" office_name varchar(20),\n",
|
29 |
+
" location_code varchar(10),\n",
|
30 |
+
" PRIMARY KEY (office_code)\n",
|
31 |
+
" );\n",
|
32 |
+
"\"\"\"\n",
|
33 |
+
"\n",
|
34 |
+
"table_location =\"\"\"\n",
|
35 |
+
" CREATE TABLE location (\n",
|
36 |
+
" location_code varchar(10),\n",
|
37 |
+
" location_name varchar(20),\n",
|
38 |
+
" PRIMARY KEY (location_code)\n",
|
39 |
+
" );\n",
|
40 |
+
"\"\"\"\n",
|
41 |
+
"\n",
|
42 |
+
"table_service =\"\"\"\n",
|
43 |
+
" CREATE TABLE service (\n",
|
44 |
+
" service_code varchar(10),\n",
|
45 |
+
" service_name varchar(20),\n",
|
46 |
+
" PRIMARY KEY (service_code)\n",
|
47 |
+
" );\n",
|
48 |
+
"\"\"\""
|
49 |
+
]
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"cell_type": "code",
|
53 |
+
"execution_count": 86,
|
54 |
+
"metadata": {},
|
55 |
+
"outputs": [
|
56 |
+
{
|
57 |
+
"data": {
|
58 |
+
"text/plain": [
|
59 |
+
"<sqlite3.Cursor at 0x143b448c0>"
|
60 |
+
]
|
61 |
+
},
|
62 |
+
"execution_count": 86,
|
63 |
+
"metadata": {},
|
64 |
+
"output_type": "execute_result"
|
65 |
+
}
|
66 |
+
],
|
67 |
+
"source": [
|
68 |
+
"# Create the data base\n",
|
69 |
+
"import sqlite3\n",
|
70 |
+
"\n",
|
71 |
+
"DB_FILENAME = 'irembo_application_4.db'\n",
|
72 |
+
"\n",
|
73 |
+
"conn = sqlite3.connect(DB_FILENAME)\n",
|
74 |
+
"cursor = conn.cursor()\n",
|
75 |
+
"cursor.execute(table_application)\n",
|
76 |
+
"cursor.execute(table_office)\n",
|
77 |
+
"cursor.execute(table_location)\n",
|
78 |
+
"cursor.execute(table_service)\n"
|
79 |
+
]
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"cell_type": "code",
|
83 |
+
"execution_count": 78,
|
84 |
+
"metadata": {},
|
85 |
+
"outputs": [],
|
86 |
+
"source": [
|
87 |
+
"conn.close()"
|
88 |
+
]
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"cell_type": "code",
|
92 |
+
"execution_count": 87,
|
93 |
+
"metadata": {},
|
94 |
+
"outputs": [],
|
95 |
+
"source": [
|
96 |
+
"# --\n",
|
97 |
+
"# Define Office, Location, Application and Service information\n",
|
98 |
+
"# --\n",
|
99 |
+
"\n",
|
100 |
+
"office_data = [\n",
|
101 |
+
" ('O1', 'Office 1', 'L1'),\n",
|
102 |
+
" ('O2', 'Office 2', 'L2'),\n",
|
103 |
+
" ('O3', 'Office 3', 'L3'),\n",
|
104 |
+
" ('O4', 'Office 4', 'L4'),\n",
|
105 |
+
" ('O5', 'Office 5', 'L5'),\n",
|
106 |
+
" ('O6', 'Office 6', 'L6'),\n",
|
107 |
+
" ('O7', 'Office 7', 'L7'),\n",
|
108 |
+
" ('O8', 'Office 8', 'L8'),\n",
|
109 |
+
" ('O9', 'Office 9', 'L9'),\n",
|
110 |
+
" ('O10', 'Office 10', 'L10'),\n",
|
111 |
+
" ('O11', 'Office 11', 'L11'),\n",
|
112 |
+
" ('O12', 'Office 12', 'L12'),\n",
|
113 |
+
" ('O13', 'Office 13', 'L13'),\n",
|
114 |
+
" ('O14', 'Office 14', 'L14'),\n",
|
115 |
+
" ('O15', 'Office 15', 'L15'),\n",
|
116 |
+
" ('O16', 'Office 16', 'L16'),\n",
|
117 |
+
" ('O17', 'Office 17', 'L17'),\n",
|
118 |
+
"]\n",
|
119 |
+
"\n",
|
120 |
+
"location_data = [\n",
|
121 |
+
" ('L1', 'Location 1'),\n",
|
122 |
+
" ('L2', 'Location 2'),\n",
|
123 |
+
" ('L3', 'Location 3'),\n",
|
124 |
+
" ('L4', 'Location 4'),\n",
|
125 |
+
" ('L5', 'Location 5'),\n",
|
126 |
+
" ('L6', 'Location 6'),\n",
|
127 |
+
" ('L7', 'Location 7'),\n",
|
128 |
+
" ('L8', 'Location 8'),\n",
|
129 |
+
"]\n",
|
130 |
+
"\n",
|
131 |
+
"service_data = [\n",
|
132 |
+
" ('S1', 'Service 1'),\n",
|
133 |
+
" ('S2', 'Service 2'),\n",
|
134 |
+
" ('S3', 'Service 3'),\n",
|
135 |
+
" ('S4', 'Service 4'),\n",
|
136 |
+
" ('S5', 'Service 5'),\n",
|
137 |
+
" ('S6', 'Service 6'),\n",
|
138 |
+
" ('S7', 'Service 7'),\n",
|
139 |
+
" ('S8', 'Service 8'),\n",
|
140 |
+
"]\n",
|
141 |
+
"\n",
|
142 |
+
"conn = sqlite3.connect(DB_FILENAME)\n",
|
143 |
+
"cursor = conn.cursor()\n",
|
144 |
+
"cursor.executemany('INSERT INTO Office VALUES (?,?,?)', office_data)\n",
|
145 |
+
"cursor.executemany('INSERT INTO Location VALUES (?,?)', location_data)\n",
|
146 |
+
"cursor.executemany('INSERT INTO Service VALUES (?,?)', service_data)\n",
|
147 |
+
"conn.commit()\n",
|
148 |
+
"conn.close()\n"
|
149 |
+
]
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"cell_type": "code",
|
153 |
+
"execution_count": 88,
|
154 |
+
"metadata": {},
|
155 |
+
"outputs": [],
|
156 |
+
"source": [
|
157 |
+
"import string\n",
|
158 |
+
"import random\n",
|
159 |
+
"from datetime import datetime, timedelta\n",
|
160 |
+
"\n",
|
161 |
+
"states = ['APPROVED','REJECTED','PENDING_PAYMENT', 'PAID']\n",
|
162 |
+
"prices = [1000, 10000,25000, 20000, 0]\n",
|
163 |
+
"\n",
|
164 |
+
"# or a function\n",
|
165 |
+
"def gen_datetime(min_year=2021, max_year=datetime.now().year):\n",
|
166 |
+
" # generate a datetime in format yyyy-mm-dd hh:mm:ss.000000\n",
|
167 |
+
"\n",
|
168 |
+
" today_datetime = datetime.now()\n",
|
169 |
+
" return today_datetime - timedelta(days=random.randint(1,1100), hours=random.randint(1,23), minutes=random.randint(1,60), seconds=random.randint(1,60))\n",
|
170 |
+
" # start = datetime(min_year, 1, 1, 00, 00, 00)\n",
|
171 |
+
" # years = max_year - min_year + 1\n",
|
172 |
+
" # end = start + timedelta(days=365 * years)\n",
|
173 |
+
" # return start + (end - start) * random.random()\n",
|
174 |
+
"\n",
|
175 |
+
"def generate_random_application(states=states):\n",
|
176 |
+
" N = 8\n",
|
177 |
+
" application_data = []\n",
|
178 |
+
" strformat = '%Y-%m-%d %H:%M:%S'\n",
|
179 |
+
" for i in range(100000,150000):\n",
|
180 |
+
" creationdate = gen_datetime()\n",
|
181 |
+
" price = prices[random.randint(0,4)]\n",
|
182 |
+
" application = (\n",
|
183 |
+
" i+1,\n",
|
184 |
+
" 'A0' + ''.join(random.choices(string.ascii_uppercase + string.digits, k=8)), \n",
|
185 |
+
" price, \n",
|
186 |
+
" price, \n",
|
187 |
+
" states[random.randint(0,3)],\n",
|
188 |
+
" 'O' +''.join(str(random.randint(1,8))),\n",
|
189 |
+
" 'S' +''.join(str(random.randint(1,8))),\n",
|
190 |
+
" creationdate.strftime(strformat),\n",
|
191 |
+
" (creationdate + timedelta(hours=9)).strftime(strformat),\n",
|
192 |
+
" (creationdate + timedelta(hours=24)).strftime(strformat),\n",
|
193 |
+
" )\n",
|
194 |
+
" \n",
|
195 |
+
" application_data.append(application)\n",
|
196 |
+
" return application_data \n",
|
197 |
+
"\n",
|
198 |
+
"application_data = generate_random_application()\n",
|
199 |
+
"\n",
|
200 |
+
"conn = sqlite3.connect(DB_FILENAME)\n",
|
201 |
+
"cursor = conn.cursor()\n",
|
202 |
+
"cursor.executemany('INSERT INTO Application VALUES (?,?,?,?,?,?,?,?,?,?)', application_data)\n",
|
203 |
+
"conn.commit()\n",
|
204 |
+
"conn.close()\n"
|
205 |
+
]
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"cell_type": "code",
|
209 |
+
"execution_count": 81,
|
210 |
+
"metadata": {},
|
211 |
+
"outputs": [
|
212 |
+
{
|
213 |
+
"name": "stdout",
|
214 |
+
"output_type": "stream",
|
215 |
+
"text": [
|
216 |
+
"[('2024-04-20', 1), ('2024-04-21', 1), ('2024-04-25', 1)]\n"
|
217 |
+
]
|
218 |
+
}
|
219 |
+
],
|
220 |
+
"source": [
|
221 |
+
"def run_query(query=''):\n",
|
222 |
+
" conn = sqlite3.connect(DB_FILENAME)\n",
|
223 |
+
" cursor = conn.cursor()\n",
|
224 |
+
" cursor.execute(query) \n",
|
225 |
+
" data = cursor.fetchall()\n",
|
226 |
+
" print(data)\n",
|
227 |
+
" conn.close\n",
|
228 |
+
"\n",
|
229 |
+
"\n",
|
230 |
+
"\n",
|
231 |
+
"\n",
|
232 |
+
"query_trend = \"\"\"\n",
|
233 |
+
"SELECT \n",
|
234 |
+
" strftime('%Y-%m-%d', date_created) AS application_date,\n",
|
235 |
+
" COUNT(*) AS approved_applications\n",
|
236 |
+
"FROM \n",
|
237 |
+
" application\n",
|
238 |
+
"JOIN \n",
|
239 |
+
" Office ON application.office_code = Office.office_code\n",
|
240 |
+
"JOIN \n",
|
241 |
+
" location ON Office.location_code = location.location_code\n",
|
242 |
+
"WHERE \n",
|
243 |
+
" application.state = 'APPROVED'\n",
|
244 |
+
" AND location.location_name = 'Location 1'\n",
|
245 |
+
" AND date_created >= date('now', '-9 days') -- last 10 days including today\n",
|
246 |
+
" AND date_created <= date('now') -- up to today\n",
|
247 |
+
"GROUP BY \n",
|
248 |
+
" strftime('%Y-%m-%d', date_created)\n",
|
249 |
+
"ORDER BY \n",
|
250 |
+
" strftime('%Y-%m-%d', date_created) ASC;\n",
|
251 |
+
"\"\"\"\n",
|
252 |
+
"\n",
|
253 |
+
"run_query(query=query_trend)\n"
|
254 |
+
]
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"cell_type": "code",
|
258 |
+
"execution_count": 82,
|
259 |
+
"metadata": {},
|
260 |
+
"outputs": [
|
261 |
+
{
|
262 |
+
"name": "stdout",
|
263 |
+
"output_type": "stream",
|
264 |
+
"text": [
|
265 |
+
"[('2021-01', 27), ('2021-02', 31), ('2021-03', 30), ('2021-04', 33), ('2021-05', 40), ('2021-06', 28), ('2021-07', 27), ('2021-08', 30), ('2021-09', 31), ('2021-10', 35), ('2021-11', 26), ('2021-12', 33), ('2022-01', 32), ('2022-02', 34), ('2022-03', 39), ('2022-04', 39), ('2022-05', 30), ('2022-06', 29), ('2022-07', 35), ('2022-08', 31), ('2022-09', 37), ('2022-10', 31), ('2022-11', 31), ('2022-12', 22), ('2023-01', 33), ('2023-02', 35), ('2023-03', 34), ('2023-04', 35), ('2023-05', 28), ('2023-06', 32), ('2023-07', 26), ('2023-08', 30), ('2023-09', 26), ('2023-10', 36), ('2023-11', 37), ('2023-12', 39), ('2024-01', 39), ('2024-02', 33), ('2024-03', 29), ('2024-04', 28), ('2024-05', 37), ('2024-06', 33), ('2024-07', 33), ('2024-08', 35), ('2024-09', 34), ('2024-10', 36), ('2024-11', 26), ('2024-12', 41)]\n"
|
266 |
+
]
|
267 |
+
}
|
268 |
+
],
|
269 |
+
"source": [
|
270 |
+
"query = \"\"\"\n",
|
271 |
+
"SELECT \n",
|
272 |
+
" strftime('%Y-%m', date_paid) AS month,\n",
|
273 |
+
" COUNT(*) AS approved_applications\n",
|
274 |
+
"FROM \n",
|
275 |
+
" application\n",
|
276 |
+
"WHERE \n",
|
277 |
+
" amount_paid = amount AND state='APPROVED' AND office_code IN (\n",
|
278 |
+
" SELECT \n",
|
279 |
+
" o.office_code\n",
|
280 |
+
" FROM \n",
|
281 |
+
" Office o, location l\n",
|
282 |
+
" WHERE \n",
|
283 |
+
" o.location_code=l.location_code AND l.location_name='Location 2'\n",
|
284 |
+
" )\n",
|
285 |
+
"GROUP BY \n",
|
286 |
+
" month\n",
|
287 |
+
"ORDER BY \n",
|
288 |
+
" month;\n",
|
289 |
+
"\"\"\"\n",
|
290 |
+
"\n",
|
291 |
+
"run_query(query=query)"
|
292 |
+
]
|
293 |
+
},
|
294 |
+
{
|
295 |
+
"cell_type": "code",
|
296 |
+
"execution_count": 83,
|
297 |
+
"metadata": {},
|
298 |
+
"outputs": [
|
299 |
+
{
|
300 |
+
"name": "stdout",
|
301 |
+
"output_type": "stream",
|
302 |
+
"text": [
|
303 |
+
"[('2023-04', 34), ('2023-05', 33), ('2023-06', 32), ('2023-07', 34), ('2023-08', 32), ('2023-09', 35), ('2023-10', 37), ('2023-11', 31), ('2023-12', 32), ('2024-01', 36), ('2024-02', 28), ('2024-03', 22)]\n"
|
304 |
+
]
|
305 |
+
}
|
306 |
+
],
|
307 |
+
"source": [
|
308 |
+
"query=\"\"\"\n",
|
309 |
+
"WITH monthly_trend AS (\n",
|
310 |
+
" SELECT strftime('%Y-%m', date_created) AS month,\n",
|
311 |
+
" COUNT(*) AS approved_applications\n",
|
312 |
+
" FROM application\n",
|
313 |
+
" WHERE state = 'APPROVED'\n",
|
314 |
+
" AND strftime('%Y-%m', date_created) >= strftime('%Y-%m', 'now', '-12 months')\n",
|
315 |
+
" AND office_code IN (SELECT office_code FROM Office WHERE location_code = 'L1')\n",
|
316 |
+
" GROUP BY month\n",
|
317 |
+
")\n",
|
318 |
+
"SELECT all_months.month, COALESCE(approved_applications, 0) AS approved_applications\n",
|
319 |
+
"FROM (\n",
|
320 |
+
" SELECT strftime('%Y-%m', 'now', '-12 months') AS month\n",
|
321 |
+
" UNION ALL\n",
|
322 |
+
" SELECT strftime('%Y-%m', 'now', '-11 months')\n",
|
323 |
+
" UNION ALL\n",
|
324 |
+
" SELECT strftime('%Y-%m', 'now', '-10 months')\n",
|
325 |
+
" UNION ALL\n",
|
326 |
+
" SELECT strftime('%Y-%m', 'now', '-9 months')\n",
|
327 |
+
" UNION ALL\n",
|
328 |
+
" SELECT strftime('%Y-%m', 'now', '-8 months')\n",
|
329 |
+
" UNION ALL\n",
|
330 |
+
" SELECT strftime('%Y-%m', 'now', '-7 months')\n",
|
331 |
+
" UNION ALL\n",
|
332 |
+
" SELECT strftime('%Y-%m', 'now', '-6 months')\n",
|
333 |
+
" UNION ALL\n",
|
334 |
+
" SELECT strftime('%Y-%m', 'now', '-5 months')\n",
|
335 |
+
" UNION ALL\n",
|
336 |
+
" SELECT strftime('%Y-%m', 'now', '-4 months')\n",
|
337 |
+
" UNION ALL\n",
|
338 |
+
" SELECT strftime('%Y-%m', 'now', '-3 months')\n",
|
339 |
+
" UNION ALL\n",
|
340 |
+
" SELECT strftime('%Y-%m', 'now', '-2 months')\n",
|
341 |
+
" UNION ALL\n",
|
342 |
+
" SELECT strftime('%Y-%m', 'now', '-1 months')\n",
|
343 |
+
") AS all_months\n",
|
344 |
+
"LEFT JOIN monthly_trend ON all_months.month = monthly_trend.month;\n",
|
345 |
+
"\n",
|
346 |
+
"\n",
|
347 |
+
"\"\"\"\n",
|
348 |
+
"\n",
|
349 |
+
"run_query(query=query)"
|
350 |
+
]
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"cell_type": "code",
|
354 |
+
"execution_count": 84,
|
355 |
+
"metadata": {},
|
356 |
+
"outputs": [
|
357 |
+
{
|
358 |
+
"name": "stdout",
|
359 |
+
"output_type": "stream",
|
360 |
+
"text": [
|
361 |
+
"[('2023-04', 25), ('2023-05', 170), ('2023-06', 157), ('2023-07', 153), ('2023-08', 160), ('2023-09', 158), ('2023-10', 165), ('2023-11', 159), ('2023-12', 175), ('2024-01', 186), ('2024-02', 158), ('2024-03', 148), ('2024-04', 148), ('2024-05', 154), ('2024-06', 166), ('2024-07', 158), ('2024-08', 166), ('2024-09', 156), ('2024-10', 164), ('2024-11', 149), ('2024-12', 170)]\n"
|
362 |
+
]
|
363 |
+
}
|
364 |
+
],
|
365 |
+
"source": [
|
366 |
+
"query =\"\"\" \n",
|
367 |
+
"SELECT \n",
|
368 |
+
" strftime('%Y-%m', date_processed) AS month, \n",
|
369 |
+
" COUNT(*) as approved_applications\n",
|
370 |
+
"FROM application\n",
|
371 |
+
"WHERE state = 'APPROVED' AND office_code IN (\n",
|
372 |
+
" SELECT office_code FROM Office WHERE location_code in ('L1','L2','L3','L4','L5')\n",
|
373 |
+
") AND date_processed >= DATE('now', '-12 months')\n",
|
374 |
+
"GROUP BY strftime('%Y-%m', date_processed)\n",
|
375 |
+
"ORDER BY month;\n",
|
376 |
+
"\"\"\"\n",
|
377 |
+
"\n",
|
378 |
+
"run_query(query=query)"
|
379 |
+
]
|
380 |
+
}
|
381 |
+
],
|
382 |
+
"metadata": {
|
383 |
+
"kernelspec": {
|
384 |
+
"display_name": "sample-projects",
|
385 |
+
"language": "python",
|
386 |
+
"name": "python3"
|
387 |
+
},
|
388 |
+
"language_info": {
|
389 |
+
"codemirror_mode": {
|
390 |
+
"name": "ipython",
|
391 |
+
"version": 3
|
392 |
+
},
|
393 |
+
"file_extension": ".py",
|
394 |
+
"mimetype": "text/x-python",
|
395 |
+
"name": "python",
|
396 |
+
"nbconvert_exporter": "python",
|
397 |
+
"pygments_lexer": "ipython3",
|
398 |
+
"version": "3.12.2"
|
399 |
+
}
|
400 |
+
},
|
401 |
+
"nbformat": 4,
|
402 |
+
"nbformat_minor": 2
|
403 |
+
}
|