DJOMGA TOUKO Peter Charles commited on
Commit
865ba19
·
1 Parent(s): 2eac26d

fix bug on managin cursor description

Browse files
app.py CHANGED
@@ -6,6 +6,9 @@ from app_access_db import *
6
 
7
  # model = "gpt-3.5-turbo"
8
  model = "gpt-4-turbo"
 
 
 
9
 
10
  # ------------------------------------------------------------------------------------------------
11
  # SIDEBAR
@@ -50,14 +53,15 @@ def submit_openai_key(model=model):
50
  st.sidebar.write('Please provide the key before')
51
  return
52
  else:
53
- client = OpenAI(api_key=openai_key)
54
  model = model
55
  completion = client.chat.completions.create(
56
  model=model,
57
  messages=[
58
- {"role": "system", "content": "You are an assistant giving simple and short answer for question of child"},
59
  {"role": "user", "content": "count from 0 to 10"}
60
- ]
 
61
  )
62
  st.sidebar.write(f'Simple count : {completion.choices[0].message.content}')
63
 
@@ -78,14 +82,15 @@ def askQuestion(model=model, question=''):
78
  print('Please provide the key before')
79
  return 'LLM API is not defined. Please provide the key before'
80
  else:
81
- client = OpenAI(api_key=openai_key)
82
  model = model
83
  completion = client.chat.completions.create(
84
  model=model,
85
  messages=[
86
  {"role": "system", "content": f'{query_context}'},
87
  {"role": "user", "content": f'{question}'}
88
- ]
 
89
  )
90
  return completion.choices[0].message.content
91
 
@@ -103,7 +108,7 @@ def displayAssistantMessage( assistantMessage: AssistantMessage):
103
  if assistantMessage.response_data.columns.size == 2:
104
  st.bar_chart(assistantMessage.response_data, x=assistantMessage.response_data.columns[0], y=assistantMessage.response_data.columns[1])
105
  if assistantMessage.response_data.columns.size == 1:
106
- st.metric(label=assistantMessage.response_data.columns[0], value=f'{assistantMessage.response_data.values[0]}')
107
 
108
 
109
 
@@ -129,10 +134,10 @@ if prompt := st.chat_input("What is up?"):
129
 
130
  response = askQuestion(question=prompt)
131
  # st.code(response, language='sql')
132
- response_data = run_query(response)
133
  # Display assistant response in chat message container
134
  assistanMsg = AssistantMessage()
135
- assistanMsg.sql = response
136
  assistanMsg.response_data = response_data
137
  displayAssistantMessage(assistanMsg)
138
  # with st.chat_message("assistant"):
 
6
 
7
  # model = "gpt-3.5-turbo"
8
  model = "gpt-4-turbo"
9
+ gpt_base_url = None
10
+ # model = "lmstudio-community/Meta-Llama-3-8B-Instruct-GGUF"
11
+ # gpt_base_url = "http://localhost:1234/v1/"
12
 
13
  # ------------------------------------------------------------------------------------------------
14
  # SIDEBAR
 
53
  st.sidebar.write('Please provide the key before')
54
  return
55
  else:
56
+ client = OpenAI(api_key=openai_key, base_url=gpt_base_url)
57
  model = model
58
  completion = client.chat.completions.create(
59
  model=model,
60
  messages=[
61
+ {"role": "system", "content": "You are an assistant giving simple and short answer for question of child. No questions, and no explanations"},
62
  {"role": "user", "content": "count from 0 to 10"}
63
+ ],
64
+ temperature=0
65
  )
66
  st.sidebar.write(f'Simple count : {completion.choices[0].message.content}')
67
 
 
82
  print('Please provide the key before')
83
  return 'LLM API is not defined. Please provide the key before'
84
  else:
85
+ client = OpenAI(api_key=openai_key, base_url=gpt_base_url)
86
  model = model
87
  completion = client.chat.completions.create(
88
  model=model,
89
  messages=[
90
  {"role": "system", "content": f'{query_context}'},
91
  {"role": "user", "content": f'{question}'}
92
+ ],
93
+ temperature=0
94
  )
95
  return completion.choices[0].message.content
96
 
 
108
  if assistantMessage.response_data.columns.size == 2:
109
  st.bar_chart(assistantMessage.response_data, x=assistantMessage.response_data.columns[0], y=assistantMessage.response_data.columns[1])
110
  if assistantMessage.response_data.columns.size == 1:
111
+ st.metric(label=assistantMessage.response_data.columns[0], value=f'{assistantMessage.response_data.values[0][0]}')
112
 
113
 
114
 
 
134
 
135
  response = askQuestion(question=prompt)
136
  # st.code(response, language='sql')
137
+ response_data = run_query(response.replace('```',''))
138
  # Display assistant response in chat message container
139
  assistanMsg = AssistantMessage()
140
+ assistanMsg.sql = response.replace('```','')
141
  assistanMsg.response_data = response_data
142
  displayAssistantMessage(assistanMsg)
143
  # with st.chat_message("assistant"):
app_access_db.py CHANGED
@@ -5,19 +5,23 @@ DB_FILENAME = 'irembo_application_4.db'
5
 
6
 
7
  def run_query(query=''):
8
- print(query)
 
 
9
  conn = sqlite3.connect(DB_FILENAME)
10
  cursor = conn.cursor()
11
- cursor.execute(query)
12
  #data = cursor.fetchall()
13
  #print(data)
14
  #conn.close()
15
-
 
16
  df = DataFrame(cursor.fetchall())
 
17
  df.columns = [i[0] for i in cursor.description]
18
 
19
  # print(f'Field Names : {field_names}')
20
- print(cursor.description)
21
  print(df.head())
22
  conn.close()
23
  return df
 
5
 
6
 
7
  def run_query(query=''):
8
+
9
+ clean_query = query.replace('```','')
10
+ print(f"clean_query \n {clean_query}")
11
  conn = sqlite3.connect(DB_FILENAME)
12
  cursor = conn.cursor()
13
+ cursor.execute(clean_query)
14
  #data = cursor.fetchall()
15
  #print(data)
16
  #conn.close()
17
+ print(f"Cursor Description \n {cursor.description}")
18
+
19
  df = DataFrame(cursor.fetchall())
20
+ print(df.head())
21
  df.columns = [i[0] for i in cursor.description]
22
 
23
  # print(f'Field Names : {field_names}')
24
+
25
  print(df.head())
26
  conn.close()
27
  return df
app_config.py CHANGED
@@ -41,5 +41,6 @@ CREATE TABLE service (
41
 
42
  Important, The query should be in SQLite format
43
  Important, Your response should be only the SQL script in SQLite format with no comment and no explanation.
 
44
 
45
  """
 
41
 
42
  Important, The query should be in SQLite format
43
  Important, Your response should be only the SQL script in SQLite format with no comment and no explanation.
44
+ Important, the output should be in text that can be executed directly wihtout any transformation. Don't return Markdown format
45
 
46
  """
openai-business-chat-06-utilitaire.ipynb CHANGED
@@ -0,0 +1,403 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 85,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "table_application = \"\"\"\n",
10
+ " CREATE TABLE application (\n",
11
+ " application_id int,\n",
12
+ " application_number varchar(10),\n",
13
+ " amount int,\n",
14
+ " amount_paid int,\n",
15
+ " state varchar(10),\n",
16
+ " office_code varchar(10), \n",
17
+ " service_code varchar(10), \n",
18
+ " date_created datetime,\n",
19
+ " date_paid datetime,\n",
20
+ " date_processed datetime,\n",
21
+ " PRIMARY KEY (application_id)\n",
22
+ " );\n",
23
+ "\"\"\"\n",
24
+ "\n",
25
+ "table_office =\"\"\"\n",
26
+ " CREATE TABLE Office (\n",
27
+ " office_code varchar(10),\n",
28
+ " office_name varchar(20),\n",
29
+ " location_code varchar(10),\n",
30
+ " PRIMARY KEY (office_code)\n",
31
+ " );\n",
32
+ "\"\"\"\n",
33
+ "\n",
34
+ "table_location =\"\"\"\n",
35
+ " CREATE TABLE location (\n",
36
+ " location_code varchar(10),\n",
37
+ " location_name varchar(20),\n",
38
+ " PRIMARY KEY (location_code)\n",
39
+ " );\n",
40
+ "\"\"\"\n",
41
+ "\n",
42
+ "table_service =\"\"\"\n",
43
+ " CREATE TABLE service (\n",
44
+ " service_code varchar(10),\n",
45
+ " service_name varchar(20),\n",
46
+ " PRIMARY KEY (service_code)\n",
47
+ " );\n",
48
+ "\"\"\""
49
+ ]
50
+ },
51
+ {
52
+ "cell_type": "code",
53
+ "execution_count": 86,
54
+ "metadata": {},
55
+ "outputs": [
56
+ {
57
+ "data": {
58
+ "text/plain": [
59
+ "<sqlite3.Cursor at 0x143b448c0>"
60
+ ]
61
+ },
62
+ "execution_count": 86,
63
+ "metadata": {},
64
+ "output_type": "execute_result"
65
+ }
66
+ ],
67
+ "source": [
68
+ "# Create the data base\n",
69
+ "import sqlite3\n",
70
+ "\n",
71
+ "DB_FILENAME = 'irembo_application_4.db'\n",
72
+ "\n",
73
+ "conn = sqlite3.connect(DB_FILENAME)\n",
74
+ "cursor = conn.cursor()\n",
75
+ "cursor.execute(table_application)\n",
76
+ "cursor.execute(table_office)\n",
77
+ "cursor.execute(table_location)\n",
78
+ "cursor.execute(table_service)\n"
79
+ ]
80
+ },
81
+ {
82
+ "cell_type": "code",
83
+ "execution_count": 78,
84
+ "metadata": {},
85
+ "outputs": [],
86
+ "source": [
87
+ "conn.close()"
88
+ ]
89
+ },
90
+ {
91
+ "cell_type": "code",
92
+ "execution_count": 87,
93
+ "metadata": {},
94
+ "outputs": [],
95
+ "source": [
96
+ "# --\n",
97
+ "# Define Office, Location, Application and Service information\n",
98
+ "# --\n",
99
+ "\n",
100
+ "office_data = [\n",
101
+ " ('O1', 'Office 1', 'L1'),\n",
102
+ " ('O2', 'Office 2', 'L2'),\n",
103
+ " ('O3', 'Office 3', 'L3'),\n",
104
+ " ('O4', 'Office 4', 'L4'),\n",
105
+ " ('O5', 'Office 5', 'L5'),\n",
106
+ " ('O6', 'Office 6', 'L6'),\n",
107
+ " ('O7', 'Office 7', 'L7'),\n",
108
+ " ('O8', 'Office 8', 'L8'),\n",
109
+ " ('O9', 'Office 9', 'L9'),\n",
110
+ " ('O10', 'Office 10', 'L10'),\n",
111
+ " ('O11', 'Office 11', 'L11'),\n",
112
+ " ('O12', 'Office 12', 'L12'),\n",
113
+ " ('O13', 'Office 13', 'L13'),\n",
114
+ " ('O14', 'Office 14', 'L14'),\n",
115
+ " ('O15', 'Office 15', 'L15'),\n",
116
+ " ('O16', 'Office 16', 'L16'),\n",
117
+ " ('O17', 'Office 17', 'L17'),\n",
118
+ "]\n",
119
+ "\n",
120
+ "location_data = [\n",
121
+ " ('L1', 'Location 1'),\n",
122
+ " ('L2', 'Location 2'),\n",
123
+ " ('L3', 'Location 3'),\n",
124
+ " ('L4', 'Location 4'),\n",
125
+ " ('L5', 'Location 5'),\n",
126
+ " ('L6', 'Location 6'),\n",
127
+ " ('L7', 'Location 7'),\n",
128
+ " ('L8', 'Location 8'),\n",
129
+ "]\n",
130
+ "\n",
131
+ "service_data = [\n",
132
+ " ('S1', 'Service 1'),\n",
133
+ " ('S2', 'Service 2'),\n",
134
+ " ('S3', 'Service 3'),\n",
135
+ " ('S4', 'Service 4'),\n",
136
+ " ('S5', 'Service 5'),\n",
137
+ " ('S6', 'Service 6'),\n",
138
+ " ('S7', 'Service 7'),\n",
139
+ " ('S8', 'Service 8'),\n",
140
+ "]\n",
141
+ "\n",
142
+ "conn = sqlite3.connect(DB_FILENAME)\n",
143
+ "cursor = conn.cursor()\n",
144
+ "cursor.executemany('INSERT INTO Office VALUES (?,?,?)', office_data)\n",
145
+ "cursor.executemany('INSERT INTO Location VALUES (?,?)', location_data)\n",
146
+ "cursor.executemany('INSERT INTO Service VALUES (?,?)', service_data)\n",
147
+ "conn.commit()\n",
148
+ "conn.close()\n"
149
+ ]
150
+ },
151
+ {
152
+ "cell_type": "code",
153
+ "execution_count": 88,
154
+ "metadata": {},
155
+ "outputs": [],
156
+ "source": [
157
+ "import string\n",
158
+ "import random\n",
159
+ "from datetime import datetime, timedelta\n",
160
+ "\n",
161
+ "states = ['APPROVED','REJECTED','PENDING_PAYMENT', 'PAID']\n",
162
+ "prices = [1000, 10000,25000, 20000, 0]\n",
163
+ "\n",
164
+ "# or a function\n",
165
+ "def gen_datetime(min_year=2021, max_year=datetime.now().year):\n",
166
+ " # generate a datetime in format yyyy-mm-dd hh:mm:ss.000000\n",
167
+ "\n",
168
+ " today_datetime = datetime.now()\n",
169
+ " return today_datetime - timedelta(days=random.randint(1,1100), hours=random.randint(1,23), minutes=random.randint(1,60), seconds=random.randint(1,60))\n",
170
+ " # start = datetime(min_year, 1, 1, 00, 00, 00)\n",
171
+ " # years = max_year - min_year + 1\n",
172
+ " # end = start + timedelta(days=365 * years)\n",
173
+ " # return start + (end - start) * random.random()\n",
174
+ "\n",
175
+ "def generate_random_application(states=states):\n",
176
+ " N = 8\n",
177
+ " application_data = []\n",
178
+ " strformat = '%Y-%m-%d %H:%M:%S'\n",
179
+ " for i in range(100000,150000):\n",
180
+ " creationdate = gen_datetime()\n",
181
+ " price = prices[random.randint(0,4)]\n",
182
+ " application = (\n",
183
+ " i+1,\n",
184
+ " 'A0' + ''.join(random.choices(string.ascii_uppercase + string.digits, k=8)), \n",
185
+ " price, \n",
186
+ " price, \n",
187
+ " states[random.randint(0,3)],\n",
188
+ " 'O' +''.join(str(random.randint(1,8))),\n",
189
+ " 'S' +''.join(str(random.randint(1,8))),\n",
190
+ " creationdate.strftime(strformat),\n",
191
+ " (creationdate + timedelta(hours=9)).strftime(strformat),\n",
192
+ " (creationdate + timedelta(hours=24)).strftime(strformat),\n",
193
+ " )\n",
194
+ " \n",
195
+ " application_data.append(application)\n",
196
+ " return application_data \n",
197
+ "\n",
198
+ "application_data = generate_random_application()\n",
199
+ "\n",
200
+ "conn = sqlite3.connect(DB_FILENAME)\n",
201
+ "cursor = conn.cursor()\n",
202
+ "cursor.executemany('INSERT INTO Application VALUES (?,?,?,?,?,?,?,?,?,?)', application_data)\n",
203
+ "conn.commit()\n",
204
+ "conn.close()\n"
205
+ ]
206
+ },
207
+ {
208
+ "cell_type": "code",
209
+ "execution_count": 81,
210
+ "metadata": {},
211
+ "outputs": [
212
+ {
213
+ "name": "stdout",
214
+ "output_type": "stream",
215
+ "text": [
216
+ "[('2024-04-20', 1), ('2024-04-21', 1), ('2024-04-25', 1)]\n"
217
+ ]
218
+ }
219
+ ],
220
+ "source": [
221
+ "def run_query(query=''):\n",
222
+ " conn = sqlite3.connect(DB_FILENAME)\n",
223
+ " cursor = conn.cursor()\n",
224
+ " cursor.execute(query) \n",
225
+ " data = cursor.fetchall()\n",
226
+ " print(data)\n",
227
+ " conn.close\n",
228
+ "\n",
229
+ "\n",
230
+ "\n",
231
+ "\n",
232
+ "query_trend = \"\"\"\n",
233
+ "SELECT \n",
234
+ " strftime('%Y-%m-%d', date_created) AS application_date,\n",
235
+ " COUNT(*) AS approved_applications\n",
236
+ "FROM \n",
237
+ " application\n",
238
+ "JOIN \n",
239
+ " Office ON application.office_code = Office.office_code\n",
240
+ "JOIN \n",
241
+ " location ON Office.location_code = location.location_code\n",
242
+ "WHERE \n",
243
+ " application.state = 'APPROVED'\n",
244
+ " AND location.location_name = 'Location 1'\n",
245
+ " AND date_created >= date('now', '-9 days') -- last 10 days including today\n",
246
+ " AND date_created <= date('now') -- up to today\n",
247
+ "GROUP BY \n",
248
+ " strftime('%Y-%m-%d', date_created)\n",
249
+ "ORDER BY \n",
250
+ " strftime('%Y-%m-%d', date_created) ASC;\n",
251
+ "\"\"\"\n",
252
+ "\n",
253
+ "run_query(query=query_trend)\n"
254
+ ]
255
+ },
256
+ {
257
+ "cell_type": "code",
258
+ "execution_count": 82,
259
+ "metadata": {},
260
+ "outputs": [
261
+ {
262
+ "name": "stdout",
263
+ "output_type": "stream",
264
+ "text": [
265
+ "[('2021-01', 27), ('2021-02', 31), ('2021-03', 30), ('2021-04', 33), ('2021-05', 40), ('2021-06', 28), ('2021-07', 27), ('2021-08', 30), ('2021-09', 31), ('2021-10', 35), ('2021-11', 26), ('2021-12', 33), ('2022-01', 32), ('2022-02', 34), ('2022-03', 39), ('2022-04', 39), ('2022-05', 30), ('2022-06', 29), ('2022-07', 35), ('2022-08', 31), ('2022-09', 37), ('2022-10', 31), ('2022-11', 31), ('2022-12', 22), ('2023-01', 33), ('2023-02', 35), ('2023-03', 34), ('2023-04', 35), ('2023-05', 28), ('2023-06', 32), ('2023-07', 26), ('2023-08', 30), ('2023-09', 26), ('2023-10', 36), ('2023-11', 37), ('2023-12', 39), ('2024-01', 39), ('2024-02', 33), ('2024-03', 29), ('2024-04', 28), ('2024-05', 37), ('2024-06', 33), ('2024-07', 33), ('2024-08', 35), ('2024-09', 34), ('2024-10', 36), ('2024-11', 26), ('2024-12', 41)]\n"
266
+ ]
267
+ }
268
+ ],
269
+ "source": [
270
+ "query = \"\"\"\n",
271
+ "SELECT \n",
272
+ " strftime('%Y-%m', date_paid) AS month,\n",
273
+ " COUNT(*) AS approved_applications\n",
274
+ "FROM \n",
275
+ " application\n",
276
+ "WHERE \n",
277
+ " amount_paid = amount AND state='APPROVED' AND office_code IN (\n",
278
+ " SELECT \n",
279
+ " o.office_code\n",
280
+ " FROM \n",
281
+ " Office o, location l\n",
282
+ " WHERE \n",
283
+ " o.location_code=l.location_code AND l.location_name='Location 2'\n",
284
+ " )\n",
285
+ "GROUP BY \n",
286
+ " month\n",
287
+ "ORDER BY \n",
288
+ " month;\n",
289
+ "\"\"\"\n",
290
+ "\n",
291
+ "run_query(query=query)"
292
+ ]
293
+ },
294
+ {
295
+ "cell_type": "code",
296
+ "execution_count": 83,
297
+ "metadata": {},
298
+ "outputs": [
299
+ {
300
+ "name": "stdout",
301
+ "output_type": "stream",
302
+ "text": [
303
+ "[('2023-04', 34), ('2023-05', 33), ('2023-06', 32), ('2023-07', 34), ('2023-08', 32), ('2023-09', 35), ('2023-10', 37), ('2023-11', 31), ('2023-12', 32), ('2024-01', 36), ('2024-02', 28), ('2024-03', 22)]\n"
304
+ ]
305
+ }
306
+ ],
307
+ "source": [
308
+ "query=\"\"\"\n",
309
+ "WITH monthly_trend AS (\n",
310
+ " SELECT strftime('%Y-%m', date_created) AS month,\n",
311
+ " COUNT(*) AS approved_applications\n",
312
+ " FROM application\n",
313
+ " WHERE state = 'APPROVED'\n",
314
+ " AND strftime('%Y-%m', date_created) >= strftime('%Y-%m', 'now', '-12 months')\n",
315
+ " AND office_code IN (SELECT office_code FROM Office WHERE location_code = 'L1')\n",
316
+ " GROUP BY month\n",
317
+ ")\n",
318
+ "SELECT all_months.month, COALESCE(approved_applications, 0) AS approved_applications\n",
319
+ "FROM (\n",
320
+ " SELECT strftime('%Y-%m', 'now', '-12 months') AS month\n",
321
+ " UNION ALL\n",
322
+ " SELECT strftime('%Y-%m', 'now', '-11 months')\n",
323
+ " UNION ALL\n",
324
+ " SELECT strftime('%Y-%m', 'now', '-10 months')\n",
325
+ " UNION ALL\n",
326
+ " SELECT strftime('%Y-%m', 'now', '-9 months')\n",
327
+ " UNION ALL\n",
328
+ " SELECT strftime('%Y-%m', 'now', '-8 months')\n",
329
+ " UNION ALL\n",
330
+ " SELECT strftime('%Y-%m', 'now', '-7 months')\n",
331
+ " UNION ALL\n",
332
+ " SELECT strftime('%Y-%m', 'now', '-6 months')\n",
333
+ " UNION ALL\n",
334
+ " SELECT strftime('%Y-%m', 'now', '-5 months')\n",
335
+ " UNION ALL\n",
336
+ " SELECT strftime('%Y-%m', 'now', '-4 months')\n",
337
+ " UNION ALL\n",
338
+ " SELECT strftime('%Y-%m', 'now', '-3 months')\n",
339
+ " UNION ALL\n",
340
+ " SELECT strftime('%Y-%m', 'now', '-2 months')\n",
341
+ " UNION ALL\n",
342
+ " SELECT strftime('%Y-%m', 'now', '-1 months')\n",
343
+ ") AS all_months\n",
344
+ "LEFT JOIN monthly_trend ON all_months.month = monthly_trend.month;\n",
345
+ "\n",
346
+ "\n",
347
+ "\"\"\"\n",
348
+ "\n",
349
+ "run_query(query=query)"
350
+ ]
351
+ },
352
+ {
353
+ "cell_type": "code",
354
+ "execution_count": 84,
355
+ "metadata": {},
356
+ "outputs": [
357
+ {
358
+ "name": "stdout",
359
+ "output_type": "stream",
360
+ "text": [
361
+ "[('2023-04', 25), ('2023-05', 170), ('2023-06', 157), ('2023-07', 153), ('2023-08', 160), ('2023-09', 158), ('2023-10', 165), ('2023-11', 159), ('2023-12', 175), ('2024-01', 186), ('2024-02', 158), ('2024-03', 148), ('2024-04', 148), ('2024-05', 154), ('2024-06', 166), ('2024-07', 158), ('2024-08', 166), ('2024-09', 156), ('2024-10', 164), ('2024-11', 149), ('2024-12', 170)]\n"
362
+ ]
363
+ }
364
+ ],
365
+ "source": [
366
+ "query =\"\"\" \n",
367
+ "SELECT \n",
368
+ " strftime('%Y-%m', date_processed) AS month, \n",
369
+ " COUNT(*) as approved_applications\n",
370
+ "FROM application\n",
371
+ "WHERE state = 'APPROVED' AND office_code IN (\n",
372
+ " SELECT office_code FROM Office WHERE location_code in ('L1','L2','L3','L4','L5')\n",
373
+ ") AND date_processed >= DATE('now', '-12 months')\n",
374
+ "GROUP BY strftime('%Y-%m', date_processed)\n",
375
+ "ORDER BY month;\n",
376
+ "\"\"\"\n",
377
+ "\n",
378
+ "run_query(query=query)"
379
+ ]
380
+ }
381
+ ],
382
+ "metadata": {
383
+ "kernelspec": {
384
+ "display_name": "sample-projects",
385
+ "language": "python",
386
+ "name": "python3"
387
+ },
388
+ "language_info": {
389
+ "codemirror_mode": {
390
+ "name": "ipython",
391
+ "version": 3
392
+ },
393
+ "file_extension": ".py",
394
+ "mimetype": "text/x-python",
395
+ "name": "python",
396
+ "nbconvert_exporter": "python",
397
+ "pygments_lexer": "ipython3",
398
+ "version": "3.12.2"
399
+ }
400
+ },
401
+ "nbformat": 4,
402
+ "nbformat_minor": 2
403
+ }