Spaces:
Sleeping
Sleeping
DJOMGA TOUKO Peter Charles
commited on
Commit
·
6183ded
1
Parent(s):
f2d8dc5
Intial commit with embetting splits in 07 parts. The Content if Crawl automatically fron the website of irembo support
Browse files- .streamlit/config.toml +4 -0
- app.py +87 -0
- app_kb_handler.py +122 -0
- openai-web-qa-1-crawl-website.ipynb +0 -0
- openai-web-qa-2-process-files.ipynb +0 -0
- openai-web-qa-3-tokenize-files.ipynb +0 -0
- openai-web-qa-6-utilitaire.ipynb +60 -0
- processed/embeddings-1.csv +0 -0
- processed/embeddings-2.csv +0 -0
- processed/embeddings-3.csv +0 -0
- processed/embeddings-4.csv +0 -0
- processed/embeddings-5.csv +0 -0
- processed/embeddings-6.csv +0 -0
- processed/embeddings-7.csv +0 -0
- requirements.txt +7 -0
.streamlit/config.toml
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[server]
|
2 |
+
runOnSave = true
|
3 |
+
headless = true
|
4 |
+
maxUploadSize = 2000
|
app.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from openai import OpenAI
|
3 |
+
from app_kb_handler import *
|
4 |
+
|
5 |
+
|
6 |
+
model = "gpt-3.5-turbo"
|
7 |
+
|
8 |
+
# ------------------------------------------------------------------------------------------------
|
9 |
+
# SIDEBAR
|
10 |
+
# ------------------------------------------------------------------------------------------------
|
11 |
+
st.sidebar.title('OpenAI Knowledge Base of Irembo')
|
12 |
+
st.sidebar.write('This chat bot is build with RAG architecture and OpenAI as LLM. All the Knowledge Base have been crawl automatically from the website https://support.irembo.gov.rw/ ')
|
13 |
+
|
14 |
+
|
15 |
+
def onchange_openai_key():
|
16 |
+
print(st.session_state.openai_key)
|
17 |
+
|
18 |
+
openai_key = st.sidebar.text_input('OpenAI key', on_change=onchange_openai_key, key='openai_key')
|
19 |
+
|
20 |
+
def submit_openai_key(model=model):
|
21 |
+
if(openai_key == None or openai_key==''):
|
22 |
+
st.sidebar.write('Please provide the key before')
|
23 |
+
return
|
24 |
+
else:
|
25 |
+
client = OpenAI(api_key=openai_key)
|
26 |
+
model = model
|
27 |
+
completion = client.chat.completions.create(
|
28 |
+
model=model,
|
29 |
+
messages=[
|
30 |
+
{"role": "system", "content": "You are an assistant giving simple and short answer for question of child"},
|
31 |
+
{"role": "user", "content": "count from 0 to 10"}
|
32 |
+
]
|
33 |
+
)
|
34 |
+
st.sidebar.write(f'Simple count : {completion.choices[0].message.content}')
|
35 |
+
|
36 |
+
submit_key = st.sidebar.button(label='Submit', on_click=submit_openai_key)
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
# ------------------------------------------------------------------------------------------------
|
41 |
+
# CHAT TITLE
|
42 |
+
# ------------------------------------------------------------------------------------------------
|
43 |
+
|
44 |
+
st.title('OpenAI Knowledge Base of Irembo')
|
45 |
+
st.write(f'Ask any question regarding using Irembo platform to apply for any services.')
|
46 |
+
|
47 |
+
def askQuestion(model=model, question=''):
|
48 |
+
if(openai_key == None or openai_key==''):
|
49 |
+
print('Please provide the key before')
|
50 |
+
return 'LLM API is not defined. Please provide the key before'
|
51 |
+
else:
|
52 |
+
if "df" not in st.session_state:
|
53 |
+
st.session_state.df = get_embeddings()
|
54 |
+
return answer_question(api_key=openai_key, question=f'{question}', df=st.session_state.df, model=model)
|
55 |
+
|
56 |
+
|
57 |
+
|
58 |
+
# Initialize chat history
|
59 |
+
if "messages" not in st.session_state:
|
60 |
+
st.session_state.messages = []
|
61 |
+
|
62 |
+
# Display chat messages from history on app rerun
|
63 |
+
for message in st.session_state.messages:
|
64 |
+
with st.chat_message(message["role"]):
|
65 |
+
st.markdown(message["content"])
|
66 |
+
|
67 |
+
# React to user input
|
68 |
+
if prompt := st.chat_input("What is up?"):
|
69 |
+
with st.status('Running', expanded=True) as status:
|
70 |
+
# Display user message in chat message container
|
71 |
+
st.chat_message("user").markdown(prompt)
|
72 |
+
# Add user message to chat history
|
73 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
74 |
+
|
75 |
+
response = askQuestion(question=prompt)
|
76 |
+
# Display assistant response in chat message container
|
77 |
+
with st.chat_message("assistant"):
|
78 |
+
st.markdown(response)
|
79 |
+
|
80 |
+
# Add assistant response to chat history
|
81 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
82 |
+
status.update(label='Reponse of last question', state="complete", expanded=True)
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
|
app_kb_handler.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Preview the embeddings created
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
from ast import literal_eval
|
5 |
+
# Define function to calculate distances from embeddings and answer question using embeddings search
|
6 |
+
from typing import List, Optional
|
7 |
+
from scipy import spatial
|
8 |
+
# Generate embeddings using OpenAI API
|
9 |
+
from openai import OpenAI
|
10 |
+
import os
|
11 |
+
|
12 |
+
|
13 |
+
GPT_MODEL = "text-davinci-003"
|
14 |
+
|
15 |
+
|
16 |
+
def get_embeddings():
|
17 |
+
df1=pd.read_csv('processed/embeddings-1.csv')
|
18 |
+
df2=pd.read_csv('processed/embeddings-2.csv')
|
19 |
+
df3=pd.read_csv('processed/embeddings-3.csv')
|
20 |
+
df4=pd.read_csv('processed/embeddings-4.csv')
|
21 |
+
df5=pd.read_csv('processed/embeddings-5.csv')
|
22 |
+
df6=pd.read_csv('processed/embeddings-6.csv')
|
23 |
+
df7=pd.read_csv('processed/embeddings-7.csv')
|
24 |
+
|
25 |
+
df = pd.concat([df1, df2, df3, df4, df5, df6, df7], axis=0, ignore_index=True)
|
26 |
+
df.columns = ['text', 'n_tokens', 'embedding']
|
27 |
+
df['embedding'] = df['embedding'].apply(literal_eval).apply(np.array)
|
28 |
+
#df.head()
|
29 |
+
return df
|
30 |
+
|
31 |
+
|
32 |
+
def distances_from_embeddings(
|
33 |
+
query_embedding: List[float],
|
34 |
+
embeddings: List[List[float]],
|
35 |
+
distance_metric="cosine",
|
36 |
+
) -> List[List]:
|
37 |
+
"""Return the distances between a query embedding and a list of embeddings."""
|
38 |
+
distance_metrics = {
|
39 |
+
"cosine": spatial.distance.cosine,
|
40 |
+
"L1": spatial.distance.cityblock,
|
41 |
+
"L2": spatial.distance.euclidean,
|
42 |
+
"Linf": spatial.distance.chebyshev,
|
43 |
+
}
|
44 |
+
distances = [
|
45 |
+
distance_metrics[distance_metric](query_embedding, embedding)
|
46 |
+
for embedding in embeddings
|
47 |
+
]
|
48 |
+
return distances
|
49 |
+
|
50 |
+
def create_context(
|
51 |
+
question, df, client, max_len=1800, size="ada",
|
52 |
+
):
|
53 |
+
"""
|
54 |
+
Create a context for a question by finding the most similar context from the dataframe
|
55 |
+
"""
|
56 |
+
|
57 |
+
# Get the embeddings for the question
|
58 |
+
q_embeddings = client.embeddings.create(input = [question], model="text-embedding-ada-002").data[0].embedding
|
59 |
+
|
60 |
+
# Get the distances from the embeddings
|
61 |
+
df['distances'] = distances_from_embeddings(q_embeddings, df['embedding'].values, distance_metric='cosine')
|
62 |
+
|
63 |
+
returns = []
|
64 |
+
cur_len = 0
|
65 |
+
|
66 |
+
# Sort by distance and add the text to the context until the context is too long
|
67 |
+
for i, row in df.sort_values('distances', ascending=True).iterrows():
|
68 |
+
|
69 |
+
# Add the length of the text to the current length
|
70 |
+
cur_len += row['n_tokens'] + 4
|
71 |
+
|
72 |
+
# If the context is too long, break
|
73 |
+
if cur_len > max_len:
|
74 |
+
break
|
75 |
+
|
76 |
+
# Else add it to the text that is being returned
|
77 |
+
returns.append(row['text'])
|
78 |
+
|
79 |
+
# Return the context
|
80 |
+
return "\n\n###\n\n".join(returns)
|
81 |
+
|
82 |
+
def answer_question(
|
83 |
+
df,
|
84 |
+
model=GPT_MODEL,
|
85 |
+
question="Am I allowed to publish model outputs to Twitter, without a human review?",
|
86 |
+
max_len=1800,
|
87 |
+
size="ada",
|
88 |
+
debug=False,
|
89 |
+
max_tokens=150,
|
90 |
+
stop_sequence=None,
|
91 |
+
api_key="fake"
|
92 |
+
):
|
93 |
+
client=OpenAI(api_key=api_key)
|
94 |
+
"""
|
95 |
+
Answer a question based on the most similar context from the dataframe texts
|
96 |
+
"""
|
97 |
+
context = create_context(
|
98 |
+
question,
|
99 |
+
df,
|
100 |
+
client=client,
|
101 |
+
max_len=max_len,
|
102 |
+
size=size
|
103 |
+
)
|
104 |
+
# If debug, print the raw model response
|
105 |
+
if debug:
|
106 |
+
print("Context:\n" + context)
|
107 |
+
print("\n\n")
|
108 |
+
|
109 |
+
try:
|
110 |
+
|
111 |
+
response = client.chat.completions.create(
|
112 |
+
model=model,
|
113 |
+
messages=[
|
114 |
+
{"role": "system", "content": f"Answer the question based on the context below, in Markdown format, and if the question can't be answered based on the context, say \"I don't know\"\n\nContext: {context}"},
|
115 |
+
{"role": "user", "content": f"Question: {question}"}
|
116 |
+
]
|
117 |
+
)
|
118 |
+
print(response)
|
119 |
+
return response.choices[0].message.content
|
120 |
+
except Exception as e:
|
121 |
+
print(e)
|
122 |
+
return f'Error processing {e.__cause__}: {e.message}'
|
openai-web-qa-1-crawl-website.ipynb
ADDED
File without changes
|
openai-web-qa-2-process-files.ipynb
ADDED
File without changes
|
openai-web-qa-3-tokenize-files.ipynb
ADDED
File without changes
|
openai-web-qa-6-utilitaire.ipynb
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 3,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [
|
8 |
+
{
|
9 |
+
"name": "stdout",
|
10 |
+
"output_type": "stream",
|
11 |
+
"text": [
|
12 |
+
"text 1278\n",
|
13 |
+
"n_tokens 1278\n",
|
14 |
+
"embedding 1278\n",
|
15 |
+
"dtype: int64\n"
|
16 |
+
]
|
17 |
+
}
|
18 |
+
],
|
19 |
+
"source": [
|
20 |
+
"import pandas as pd\n",
|
21 |
+
"\n",
|
22 |
+
"df1=pd.read_csv('processed/embeddings-1.csv')\n",
|
23 |
+
"df2=pd.read_csv('processed/embeddings-2.csv')\n",
|
24 |
+
"df3=pd.read_csv('processed/embeddings-3.csv')\n",
|
25 |
+
"df4=pd.read_csv('processed/embeddings-4.csv')\n",
|
26 |
+
"df5=pd.read_csv('processed/embeddings-5.csv')\n",
|
27 |
+
"df6=pd.read_csv('processed/embeddings-6.csv')\n",
|
28 |
+
"df7=pd.read_csv('processed/embeddings-7.csv')\n",
|
29 |
+
"\n",
|
30 |
+
"df = pd.concat([df1, df2, df3, df4, df5, df6, df7], axis=0, ignore_index=True)\n",
|
31 |
+
"df.columns = ['text', 'n_tokens', 'embedding']\n",
|
32 |
+
"# df['embedding'] = df['embedding'].apply(literal_eval).apply(np.array)\n",
|
33 |
+
"df.head()\n",
|
34 |
+
"print(df.count())\n",
|
35 |
+
" "
|
36 |
+
]
|
37 |
+
}
|
38 |
+
],
|
39 |
+
"metadata": {
|
40 |
+
"kernelspec": {
|
41 |
+
"display_name": "sample-projects",
|
42 |
+
"language": "python",
|
43 |
+
"name": "python3"
|
44 |
+
},
|
45 |
+
"language_info": {
|
46 |
+
"codemirror_mode": {
|
47 |
+
"name": "ipython",
|
48 |
+
"version": 3
|
49 |
+
},
|
50 |
+
"file_extension": ".py",
|
51 |
+
"mimetype": "text/x-python",
|
52 |
+
"name": "python",
|
53 |
+
"nbconvert_exporter": "python",
|
54 |
+
"pygments_lexer": "ipython3",
|
55 |
+
"version": "3.12.2"
|
56 |
+
}
|
57 |
+
},
|
58 |
+
"nbformat": 4,
|
59 |
+
"nbformat_minor": 2
|
60 |
+
}
|
processed/embeddings-1.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
processed/embeddings-2.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
processed/embeddings-3.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
processed/embeddings-4.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
processed/embeddings-5.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
processed/embeddings-6.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
processed/embeddings-7.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
openai
|
3 |
+
watchdog
|
4 |
+
pandas
|
5 |
+
numpy
|
6 |
+
scipy
|
7 |
+
typing
|