{ "cells": [ { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "text 1278\n", "n_tokens 1278\n", "embedding 1278\n", "dtype: int64\n" ] } ], "source": [ "import pandas as pd\n", "\n", "df1=pd.read_csv('processed/embeddings-1.csv')\n", "df2=pd.read_csv('processed/embeddings-2.csv')\n", "df3=pd.read_csv('processed/embeddings-3.csv')\n", "df4=pd.read_csv('processed/embeddings-4.csv')\n", "df5=pd.read_csv('processed/embeddings-5.csv')\n", "df6=pd.read_csv('processed/embeddings-6.csv')\n", "df7=pd.read_csv('processed/embeddings-7.csv')\n", "\n", "df = pd.concat([df1, df2, df3, df4, df5, df6, df7], axis=0, ignore_index=True)\n", "df.columns = ['text', 'n_tokens', 'embedding']\n", "# df['embedding'] = df['embedding'].apply(literal_eval).apply(np.array)\n", "df.head()\n", "print(df.count())\n", " " ] } ], "metadata": { "kernelspec": { "display_name": "sample-projects", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.2" } }, "nbformat": 4, "nbformat_minor": 2 }