File size: 2,914 Bytes
7602e2f
be22e6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7602e2f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import streamlit as st
from openai import OpenAI


model = "gpt-3.5-turbo"


st.sidebar.title('OpenAI Simple Conversation')
st.sidebar.write('Please provide your OpenAI key to be used for this conversation.')

def onchange_openai_key():
    print(st.session_state.openai_key) 

openai_key = st.sidebar.text_input('OpenAI key', on_change=onchange_openai_key, key='openai_key')

st.title('OpenAI Simple Conversation')
st.write(f'Ask any question that can be answer by the LLM {model}.')

def submit_openai_key(model=model):
    if(openai_key == None or openai_key==''):
        st.sidebar.write('Please provide the key before')
        return
    else:
        client = OpenAI(api_key=openai_key)
        model = model
        completion = client.chat.completions.create(
            model=model,  
            messages=[
                {"role": "system", "content": "You are an assistant giving simple and short answer for question of child"},
                {"role": "user", "content": "count from 0 to 10"}
            ]
        )        
        st.sidebar.write(f'Simple count : {completion.choices[0].message.content}')


def askQuestion(model=model, question=''):
    if(openai_key == None or openai_key==''):
        print('Please provide the key before')
        return 'LLM API is not defined. Please provide the key before'
    else:
        client = OpenAI(api_key=openai_key)
        model = model
        completion = client.chat.completions.create(
            model=model,  
            messages=[
                {"role": "system", "content": "You are an assistant giving simple and short answer for question of child"},
                {"role": "user", "content": f'{question}'}
            ]
        )        
        return completion.choices[0].message.content



# Initialize chat history
if "messages" not in st.session_state:
    st.session_state.messages = []

# Display chat messages from history on app rerun
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

# React to user input
if prompt := st.chat_input("What is up?"):
    with st.status('Running', expanded=True) as status:
        # Display user message in chat message container
        st.chat_message("user").markdown(prompt)
        # Add user message to chat history
        st.session_state.messages.append({"role": "user", "content": prompt})

        response = askQuestion(question=prompt)
        # Display assistant response in chat message container
        with st.chat_message("assistant"):
            st.markdown(response)
            
        # Add assistant response to chat history
        st.session_state.messages.append({"role": "assistant", "content": response})
        status.update(label='Reponse of last question', state="complete", expanded=True)


submit_key = st.sidebar.button(label='Submit', on_click=submit_openai_key)