Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,153 +1,89 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
-
import
|
4 |
|
5 |
-
# import spaces #[uncomment to use ZeroGPU]
|
6 |
-
from diffusers import DiffusionPipeline
|
7 |
import torch
|
|
|
8 |
|
9 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
-
model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
MAX_SEED = np.iinfo(np.int32).max
|
21 |
-
MAX_IMAGE_SIZE = 1024
|
22 |
-
|
23 |
-
|
24 |
-
# @spaces.GPU #[uncomment to use ZeroGPU]
|
25 |
-
def infer(
|
26 |
-
prompt,
|
27 |
-
negative_prompt,
|
28 |
-
seed,
|
29 |
-
randomize_seed,
|
30 |
-
width,
|
31 |
-
height,
|
32 |
-
guidance_scale,
|
33 |
-
num_inference_steps,
|
34 |
-
progress=gr.Progress(track_tqdm=True),
|
35 |
-
):
|
36 |
-
if randomize_seed:
|
37 |
-
seed = random.randint(0, MAX_SEED)
|
38 |
-
|
39 |
-
generator = torch.Generator().manual_seed(seed)
|
40 |
-
|
41 |
-
image = pipe(
|
42 |
-
prompt=prompt,
|
43 |
-
negative_prompt=negative_prompt,
|
44 |
-
guidance_scale=guidance_scale,
|
45 |
-
num_inference_steps=num_inference_steps,
|
46 |
-
width=width,
|
47 |
-
height=height,
|
48 |
-
generator=generator,
|
49 |
-
).images[0]
|
50 |
-
|
51 |
-
return image, seed
|
52 |
-
|
53 |
-
|
54 |
-
examples = [
|
55 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
56 |
-
"An astronaut riding a green horse",
|
57 |
-
"A delicious ceviche cheesecake slice",
|
58 |
-
]
|
59 |
-
|
60 |
-
css = """
|
61 |
-
#col-container {
|
62 |
-
margin: 0 auto;
|
63 |
-
max-width: 640px;
|
64 |
}
|
65 |
-
"""
|
66 |
-
|
67 |
-
with gr.Blocks(css=css) as demo:
|
68 |
-
with gr.Column(elem_id="col-container"):
|
69 |
-
gr.Markdown(" # Text-to-Image Gradio Template")
|
70 |
-
|
71 |
-
with gr.Row():
|
72 |
-
prompt = gr.Text(
|
73 |
-
label="Prompt",
|
74 |
-
show_label=False,
|
75 |
-
max_lines=1,
|
76 |
-
placeholder="Enter your prompt",
|
77 |
-
container=False,
|
78 |
-
)
|
79 |
-
|
80 |
-
run_button = gr.Button("Run", scale=0, variant="primary")
|
81 |
-
|
82 |
-
result = gr.Image(label="Result", show_label=False)
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
)
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
label="Width",
|
105 |
-
minimum=256,
|
106 |
-
maximum=MAX_IMAGE_SIZE,
|
107 |
-
step=32,
|
108 |
-
value=1024, # Replace with defaults that work for your model
|
109 |
-
)
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
|
119 |
-
with gr.Row():
|
120 |
-
guidance_scale = gr.Slider(
|
121 |
-
label="Guidance scale",
|
122 |
-
minimum=0.0,
|
123 |
-
maximum=10.0,
|
124 |
-
step=0.1,
|
125 |
-
value=0.0, # Replace with defaults that work for your model
|
126 |
-
)
|
127 |
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
-
gr.Examples(examples=examples, inputs=[prompt])
|
137 |
gr.on(
|
138 |
-
triggers=[
|
139 |
-
fn=
|
140 |
inputs=[
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
randomize_seed,
|
145 |
-
width,
|
146 |
-
height,
|
147 |
-
guidance_scale,
|
148 |
-
num_inference_steps,
|
149 |
],
|
150 |
-
outputs=[
|
151 |
)
|
152 |
|
153 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
+
from transformers import TimmWrapper
|
4 |
|
|
|
|
|
5 |
import torch
|
6 |
+
import torchvision.transform.v2 as T
|
7 |
|
|
|
|
|
8 |
|
9 |
+
MODEL_MAP = {
|
10 |
+
"hf_hub:p1atdev/style_250412.vit_base_patch16_siglip_384.v2_webli": {
|
11 |
+
"mean": [0, 0, 0],
|
12 |
+
"std": [1.0, 1.0, 1.0],
|
13 |
+
"image_size": 384,
|
14 |
+
"background": 0,
|
15 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
def config_to_processor(config: dict):
|
19 |
+
return T.Compose(
|
20 |
+
[
|
21 |
+
T.Resize(
|
22 |
+
size=None,
|
23 |
+
max_size=config["image_size"],
|
24 |
+
interpolation=T.InterpolationMode.NEAREST,
|
25 |
+
),
|
26 |
+
T.Pad(
|
27 |
+
padding=config["image_size"] // 2,
|
28 |
+
fill=config["background]", # black
|
29 |
+
),
|
30 |
+
T.CenterCrop(
|
31 |
+
size=(config["image_size"], config["image_size"]),
|
32 |
+
),
|
33 |
+
T.PILToTensor(),
|
34 |
+
T.ToDtype(dtype=torch.float32, scale=True), # 0~255 -> 0~1
|
35 |
+
T.Normalize(mean=config["mean"], std=config["std"]),
|
36 |
+
]
|
37 |
+
)
|
38 |
|
39 |
+
def load_model(name: str):
|
40 |
+
return TimmWrapper.from_pretrained(name).eval().requires_grad_False)
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
MODELS = {
|
43 |
+
name: {
|
44 |
+
"model": load_model(name),
|
45 |
+
"processor": config_to_processor(config),
|
46 |
+
}
|
47 |
+
for name, config in MODEL_NAMES.items()
|
48 |
+
}
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
@torch.inference_mode()
|
52 |
+
def calculate_similarity(model:_name str, image_1: Image.Image, image_2: Image.Image):
|
53 |
+
model = MODELS[model_name]["model"]
|
54 |
+
processor = MODELS[model_name]["processor"]
|
55 |
+
|
56 |
+
pixel_values = torch.cat([
|
57 |
+
processor(image) for image in [image_1, image_2]
|
58 |
+
])
|
59 |
+
embeddings = model(pixel_values)
|
60 |
+
embeddings /= embeddings.norm(p=2, dim=-1, keepdim=True)
|
61 |
+
|
62 |
+
similarity = (embeddings[0] * embeddings[1]).item()
|
63 |
+
return similarity
|
64 |
+
|
65 |
+
|
66 |
+
with gr.Blocks() as demo:
|
67 |
+
with gr.Row():
|
68 |
+
with gr.Column():
|
69 |
+
image_1 = gr.Image("Image 1", type="pil")
|
70 |
+
image_2 = gr.Image("Image 2", type="pil")
|
71 |
+
|
72 |
+
model_name = gr.Dropdwon("Model", choices=list(MODELS.keys())
|
73 |
+
submit_btn = gr.Button("Submit", variant="primary")
|
74 |
+
|
75 |
+
with gr.Column():
|
76 |
+
similarity = gr.Text("Similarity")
|
77 |
|
|
|
78 |
gr.on(
|
79 |
+
triggers=[submit_btn.click],
|
80 |
+
fn=calculate_similarity,
|
81 |
inputs=[
|
82 |
+
model_name,
|
83 |
+
image_1,
|
84 |
+
image_2,
|
|
|
|
|
|
|
|
|
|
|
85 |
],
|
86 |
+
outputs=[image_2],
|
87 |
)
|
88 |
|
89 |
if __name__ == "__main__":
|