p1atdev commited on
Commit
5bffca4
·
verified ·
1 Parent(s): 67be74b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +70 -134
app.py CHANGED
@@ -1,153 +1,89 @@
1
  import gradio as gr
2
  import numpy as np
3
- import random
4
 
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
  import torch
 
8
 
9
- device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
 
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
-
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
19
-
20
- MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
-
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
- ):
36
- if randomize_seed:
37
- seed = random.randint(0, MAX_SEED)
38
-
39
- generator = torch.Generator().manual_seed(seed)
40
-
41
- image = pipe(
42
- prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
- generator=generator,
49
- ).images[0]
50
-
51
- return image, seed
52
-
53
-
54
- examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
- ]
59
-
60
- css = """
61
- #col-container {
62
- margin: 0 auto;
63
- max-width: 640px;
64
  }
65
- """
66
-
67
- with gr.Blocks(css=css) as demo:
68
- with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
-
71
- with gr.Row():
72
- prompt = gr.Text(
73
- label="Prompt",
74
- show_label=False,
75
- max_lines=1,
76
- placeholder="Enter your prompt",
77
- container=False,
78
- )
79
-
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
-
82
- result = gr.Image(label="Result", show_label=False)
83
 
84
- with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
90
- )
91
-
92
- seed = gr.Slider(
93
- label="Seed",
94
- minimum=0,
95
- maximum=MAX_SEED,
96
- step=1,
97
- value=0,
98
- )
99
-
100
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
 
 
 
101
 
102
- with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
- )
110
 
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
 
119
- with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
- )
127
 
128
- num_inference_steps = gr.Slider(
129
- label="Number of inference steps",
130
- minimum=1,
131
- maximum=50,
132
- step=1,
133
- value=2, # Replace with defaults that work for your model
134
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
135
 
136
- gr.Examples(examples=examples, inputs=[prompt])
137
  gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
- fn=infer,
140
  inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
  ],
150
- outputs=[result, seed],
151
  )
152
 
153
  if __name__ == "__main__":
 
1
  import gradio as gr
2
  import numpy as np
3
+ from transformers import TimmWrapper
4
 
 
 
5
  import torch
6
+ import torchvision.transform.v2 as T
7
 
 
 
8
 
9
+ MODEL_MAP = {
10
+ "hf_hub:p1atdev/style_250412.vit_base_patch16_siglip_384.v2_webli": {
11
+ "mean": [0, 0, 0],
12
+ "std": [1.0, 1.0, 1.0],
13
+ "image_size": 384,
14
+ "background": 0,
15
+ }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
+ def config_to_processor(config: dict):
19
+ return T.Compose(
20
+ [
21
+ T.Resize(
22
+ size=None,
23
+ max_size=config["image_size"],
24
+ interpolation=T.InterpolationMode.NEAREST,
25
+ ),
26
+ T.Pad(
27
+ padding=config["image_size"] // 2,
28
+ fill=config["background]", # black
29
+ ),
30
+ T.CenterCrop(
31
+ size=(config["image_size"], config["image_size"]),
32
+ ),
33
+ T.PILToTensor(),
34
+ T.ToDtype(dtype=torch.float32, scale=True), # 0~255 -> 0~1
35
+ T.Normalize(mean=config["mean"], std=config["std"]),
36
+ ]
37
+ )
38
 
39
+ def load_model(name: str):
40
+ return TimmWrapper.from_pretrained(name).eval().requires_grad_False)
 
 
 
 
 
 
41
 
42
+ MODELS = {
43
+ name: {
44
+ "model": load_model(name),
45
+ "processor": config_to_processor(config),
46
+ }
47
+ for name, config in MODEL_NAMES.items()
48
+ }
49
 
 
 
 
 
 
 
 
 
50
 
51
+ @torch.inference_mode()
52
+ def calculate_similarity(model:_name str, image_1: Image.Image, image_2: Image.Image):
53
+ model = MODELS[model_name]["model"]
54
+ processor = MODELS[model_name]["processor"]
55
+
56
+ pixel_values = torch.cat([
57
+ processor(image) for image in [image_1, image_2]
58
+ ])
59
+ embeddings = model(pixel_values)
60
+ embeddings /= embeddings.norm(p=2, dim=-1, keepdim=True)
61
+
62
+ similarity = (embeddings[0] * embeddings[1]).item()
63
+ return similarity
64
+
65
+
66
+ with gr.Blocks() as demo:
67
+ with gr.Row():
68
+ with gr.Column():
69
+ image_1 = gr.Image("Image 1", type="pil")
70
+ image_2 = gr.Image("Image 2", type="pil")
71
+
72
+ model_name = gr.Dropdwon("Model", choices=list(MODELS.keys())
73
+ submit_btn = gr.Button("Submit", variant="primary")
74
+
75
+ with gr.Column():
76
+ similarity = gr.Text("Similarity")
77
 
 
78
  gr.on(
79
+ triggers=[submit_btn.click],
80
+ fn=calculate_similarity,
81
  inputs=[
82
+ model_name,
83
+ image_1,
84
+ image_2,
 
 
 
 
 
85
  ],
86
+ outputs=[image_2],
87
  )
88
 
89
  if __name__ == "__main__":