File size: 4,352 Bytes
48847bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import gradio as gr
import requests
from transformers import AutoTokenizer, T5ForConditionalGeneration, AutoModelForSeq2SeqLM
import torch

tokenizer = AutoTokenizer.from_pretrained("microsoft/codereviewer")

tokenizer.special_dict = {
    f"<e{i}>": tokenizer.get_vocab()[f"<e{i}>"] for i in range(99, -1, -1)
}
tokenizer.mask_id = tokenizer.get_vocab()["<mask>"]
tokenizer.bos_id = tokenizer.get_vocab()["<s>"]
tokenizer.pad_id = tokenizer.get_vocab()["<pad>"]
tokenizer.eos_id = tokenizer.get_vocab()["</s>"]
tokenizer.msg_id = tokenizer.get_vocab()["<msg>"]
tokenizer.keep_id = tokenizer.get_vocab()["<keep>"]
tokenizer.add_id = tokenizer.get_vocab()["<add>"]
tokenizer.del_id = tokenizer.get_vocab()["<del>"]
tokenizer.start_id = tokenizer.get_vocab()["<start>"]
tokenizer.end_id = tokenizer.get_vocab()["<end>"]

model = AutoModelForSeq2SeqLM.from_pretrained("microsoft/codereviewer")

model.eval()

MAX_SOURCE_LENGTH = 512

def pad_assert(tokenizer, source_ids):
    source_ids = source_ids[:MAX_SOURCE_LENGTH - 2]
    source_ids = [tokenizer.bos_id] + source_ids + [tokenizer.eos_id]
    pad_len = MAX_SOURCE_LENGTH - len(source_ids)
    source_ids += [tokenizer.pad_id] * pad_len
    assert len(source_ids) == MAX_SOURCE_LENGTH, "Not equal length."
    return source_ids


def encode_diff(tokenizer, diff, msg, source):
    difflines = diff.split("\n")[1:]  # remove start @@
    difflines = [line for line in difflines if len(line.strip()) > 0]
    map_dic = {"-": 0, "+": 1, " ": 2}

    def f(s):
        if s in map_dic:
            return map_dic[s]
        else:
            return 2

    labels = [f(line[0]) for line in difflines]
    difflines = [line[1:].strip() for line in difflines]
    inputstr = "<s>" + source + "</s>"
    inputstr += "<msg>" + msg
    for label, line in zip(labels, difflines):
        if label == 1:
            inputstr += "<add>" + line
        elif label == 0:
            inputstr += "<del>" + line
        else:
            inputstr += "<keep>" + line
    source_ids = tokenizer.encode(inputstr, max_length=MAX_SOURCE_LENGTH, truncation=True)[1:-1]
    source_ids = pad_assert(tokenizer, source_ids)
    return source_ids


class FileDiffs(object):
    def __init__(self, diff_string):
        diff_array = diff_string.split("\n")
        self.file_name = diff_array[0]
        self.file_path = self.file_name.split("a/", 1)[1].rsplit("b/", 1)[0]
        self.diffs = list()
        for line in diff_array[4:]:
            if line.startswith("@@"):
                self.diffs.append(str())
            self.diffs[-1] += "\n" + line


def review_commit(user, repository, commit):
    commit_metadata = requests.get(F"https://api.github.com/repos/{user}/{repository}/commits/{commit}").json()
    msg = commit_metadata["commit"]["message"]

    diff_data = requests.get(F"https://api.github.com/repos/{user}/{repository}/commits/{commit}", headers={"Accept":"application/vnd.github.diff"})
    code_diff = diff_data.text

    files_diffs = list()
    for file in code_diff.split("diff --git"):
        if len(file) > 0:
            fd = FileDiffs(file)
            files_diffs.append(fd)

    output = ""
    for fd in files_diffs:
        output += F"File:{fd.file_path}\n"
        source = requests.get(F"https://raw.githubusercontent.com/{user}/{repository}/^{commit}/{fd.file_path}").text

        for diff in fd.diffs:
            inputs = torch.tensor([encode_diff(tokenizer, diff, msg, source)], dtype=torch.long).to("cpu")
            inputs_mask = inputs.ne(tokenizer.pad_id)
            preds = model.generate(inputs,
                                   attention_mask=inputs_mask,
                                   use_cache=True,
                                   num_beams=5,
                                   early_stopping=True,
                                   max_length=100,
                                   num_return_sequences=2
                                   )
            preds = list(preds.cpu().numpy())
            pred_nls = [tokenizer.decode(id[2:], skip_special_tokens=True, clean_up_tokenization_spaces=False) for id in
                        preds]
            output += diff + "\n#######\nComment:\n#######\n" + pred_nls[0] + "\n#######\n"
    return output


iface = gr.Interface(fn=review_commit, inputs=["text", "text", "text"], outputs="text")
iface.launch()