Update app.py
Browse files
app.py
CHANGED
@@ -2,17 +2,22 @@ from huggingface_hub import from_pretrained_fastai
|
|
2 |
import gradio as gr
|
3 |
from fastai.vision.all import *
|
4 |
from icevision.all import *
|
|
|
5 |
import PIL
|
6 |
|
7 |
-
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
|
|
10 |
|
11 |
# Definimos una función que se encarga de llevar a cabo las predicciones
|
12 |
def predict(img):
|
13 |
img = PIL.Image.open(img)
|
14 |
-
|
15 |
-
pred_dict = models.ross.efficientdet.end2end_detect(img, infer_tfms, model.to("cpu"), class_map=class_map, detection_threshold=0.5)
|
16 |
return pred_dict["img"]
|
17 |
|
18 |
# Creamos la interfaz y la lanzamos.
|
|
|
2 |
import gradio as gr
|
3 |
from fastai.vision.all import *
|
4 |
from icevision.all import *
|
5 |
+
from icevision.models.checkpoint import *
|
6 |
import PIL
|
7 |
|
8 |
+
checkpoint_path = "efficientdetMapaches.pth"
|
9 |
+
checkpoint_and_model = model_from_checkpoint(checkpoint_path)
|
10 |
+
model = checkpoint_and_model["model"]
|
11 |
+
model_type = checkpoint_and_model["model_type"]
|
12 |
+
class_map = checkpoint_and_model["class_map"]
|
13 |
|
14 |
+
img_size = checkpoint_and_model["img_size"]
|
15 |
+
valid_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(img_size), tfms.A.Normalize()])
|
16 |
|
17 |
# Definimos una función que se encarga de llevar a cabo las predicciones
|
18 |
def predict(img):
|
19 |
img = PIL.Image.open(img)
|
20 |
+
pred_dict = model_type(img, valid_tfms, model.to("cpu"), class_map=class_map, detection_threshold=0.5)
|
|
|
21 |
return pred_dict["img"]
|
22 |
|
23 |
# Creamos la interfaz y la lanzamos.
|