from huggingface_hub import from_pretrained_fastai import gradio as gr from fastai.vision.all import * from icevision.all import * from icevision.models.checkpoint import * import PIL checkpoint_path = "efficientdetMapaches.pth" checkpoint_and_model = model_from_checkpoint(checkpoint_path) model = checkpoint_and_model["model"] model_type = checkpoint_and_model["model_type"] class_map = checkpoint_and_model["class_map"] img_size = checkpoint_and_model["img_size"] valid_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(img_size), tfms.A.Normalize()]) # Definimos una funciĆ³n que se encarga de llevar a cabo las predicciones def predict(img): img = PIL.Image.open(img) pred_dict = model_type(img, valid_tfms, model.to("cpu"), class_map=class_map, detection_threshold=0.5) return pred_dict["img"] # Creamos la interfaz y la lanzamos. gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=gr.outputs.Image(shape(128,128)), examples=['raccoon-161.jpg','raccoon-162.jpg']).launch(share=False)