from huggingface_hub import from_pretrained_fastai import gradio as gr from icevision.all import * repo_id = "paascorb/image-detection-efficientdet" learner = from_pretrained_fastai(repo_id) # Definimos una funciĆ³n que se encarga de llevar a cabo las predicciones def predict(img): img = PIL.Image.open('mapaches/test/images/raccoon-190.jpg') infer_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(size),tfms.A.Normalize()]) pred_dict = models.ross.efficientdet.end2end_detect(img, infer_tfms, model.to("cpu"), class_map=class_map, detection_threshold=0.5) return pred_dict["img"] # Creamos la interfaz y la lanzamos. gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=gr.outputs.Image(shape(128,128)), examples=['raccoon-161.jpg','raccoon-162.jpg']).launch(share=False)