practica3 / app.py
paascorb's picture
Update app.py
35fd4e9
raw
history blame
1.95 kB
from huggingface_hub import from_pretrained_fastai
import gradio as gr
from fastai.vision.all import *
import PIL
import torchvision.transforms as transforms
class TargetMaskConvertTransform(ItemTransform):
def __init__(self):
pass
def encodes(self, x):
img,mask = x
#Convert to array
mask = np.array(mask)
# Aqu铆 definimos cada clase en la m谩scara
# uva:
mask[mask==255]=1
# hojas:
mask[mask==150]=2
# conductores:
mask[mask==76]=3
mask[mask==74]=3
# madera:
mask[mask==29]=4
mask[mask==25]=4
# Back to PILMask
mask = PILMask.create(mask)
return img, mask
repo_id = "paascorb/practica3_Segmentation"
learner = from_pretrained_fastai(repo_id)
def transform_image(image):
my_transforms = transforms.Compose([transforms.ToTensor(),
transforms.Normalize(
[0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
image_aux = image
return my_transforms(image_aux).unsqueeze(0).to(device)
def predict(img):
img = PIL.Image.fromarray(img, "RGB")
image = transforms.Resize((480,640))(img)
tensor = transform_image(image=image)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
learner.to(device)
with torch.no_grad():
outputs = learner(tensor)
outputs = torch.argmax(outputs,1)
mask = np.array(outputs.cpu())
mask[mask==1]=255
mask[mask==2]=150
mask[mask==3]=76
mask[mask==4]=29
mask=np.reshape(mask,(480,640))
return Image.fromarray(mask.astype('uint8'))
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=[gr.outputs.Image(type="pil", label="Predicci贸n")], examples=['color_155.jpg','color_154.jpg']).launch(share=False)