from huggingface_hub import from_pretrained_fastai | |
import gradio as gr | |
from fastai.vision.all import * | |
import PIL | |
import torchvision.transforms as transforms | |
# from albumentations import ( | |
# Compose, | |
# OneOf, | |
# ElasticTransform, | |
# GridDistortion, | |
# OpticalDistortion, | |
# HorizontalFlip, | |
# Rotate, | |
# Transpose, | |
# CLAHE, | |
# ShiftScaleRotate | |
# ) | |
# def get_y_fn (x): | |
# return Path(str(x).replace("Images","Labels").replace("color","gt").replace(".jpg",".png")) | |
# def ParentSplitter(x): | |
# return Path(x).parent.name==test_name | |
# class SegmentationAlbumentationsTransform(ItemTransform): | |
# split_idx = 0 | |
# def __init__(self, aug): | |
# self.aug = aug | |
# def encodes(self, x): | |
# img,mask = x | |
# aug = self.aug(image=np.array(img), mask=np.array(mask)) | |
# return PILImage.create(aug["image"]), PILMask.create(aug["mask"]) | |
# transforms=Compose([HorizontalFlip(p=0.5), | |
# Rotate(p=0.40,limit=10),GridDistortion() | |
# ],p=1) | |
# transformPipeline=SegmentationAlbumentationsTransform(transforms) | |
# class TargetMaskConvertTransform(ItemTransform): | |
# def __init__(self): | |
# pass | |
# def encodes(self, x): | |
# img,mask = x | |
# #Convert to array | |
# mask = np.array(mask) | |
# # Aqu铆 definimos cada clase en la m谩scara | |
# # uva: | |
# mask[mask==255]=1 | |
# # hojas: | |
# mask[mask==150]=2 | |
# # conductores: | |
# mask[mask==76]=3 | |
# mask[mask==74]=3 | |
# # madera: | |
# mask[mask==29]=4 | |
# mask[mask==25]=4 | |
# # Back to PILMask | |
# mask = PILMask.create(mask) | |
# return img, mask | |
# repo_id = "paascorb/practica3_Segmentation" | |
# learner = from_pretrained_fastai(repo_id) | |
learn = unet_learner(None,resnet18,cbs=None,metrics=[DiceMulti()]).to_fp16() | |
learn.load('model') | |
def transform_image(image): | |
my_transforms = transforms.Compose([transforms.ToTensor(), | |
transforms.Normalize( | |
[0.485, 0.456, 0.406], | |
[0.229, 0.224, 0.225])]) | |
image_aux = image | |
return my_transforms(image_aux).unsqueeze(0).to(device) | |
def predict(img): | |
img = PIL.Image.fromarray(img, "RGB") | |
image = transforms.Resize((480,640))(img) | |
tensor = transform_image(image=image) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
learner.to(device) | |
with torch.no_grad(): | |
outputs = learner(tensor) | |
outputs = torch.argmax(outputs,1) | |
mask = np.array(outputs.cpu()) | |
mask[mask==1]=255 | |
mask[mask==2]=150 | |
mask[mask==3]=76 | |
mask[mask==4]=29 | |
mask=np.reshape(mask,(480,640)) | |
return Image.fromarray(mask.astype('uint8')) | |
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=[gr.outputs.Image(type="pil", label="Predicci贸n")], examples=['color_155.jpg','color_154.jpg']).launch(share=False) |