from huggingface_hub import from_pretrained_fastai import gradio as gr from fastai.basics import * from fastai.vision import models from fastai.vision.all import * from fastai.metrics import * from fastai.data.all import * from fastai.callback import * from pathlib import Path import random import PIL import torchvision.transforms as transformss import torch from albumentations import * def get_y_fn (x): return Path(str(x).replace("Images","Labels").replace("color","gt").replace(".jpg",".png")) def ParentSplitter(x): return Path(x).parent.name==test_name class SegmentationAlbumentationsTransform(ItemTransform): split_idx = 0 def __init__(self, aug): self.aug = aug def encodes(self, x): img,mask = x aug = self.aug(image=np.array(img), mask=np.array(mask)) return PILImage.create(aug["image"]), PILMask.create(aug["mask"]) transforms=Compose([HorizontalFlip(p=0.5), Rotate(p=0.40,limit=10),GridDistortion() ],p=1) transformPipeline=SegmentationAlbumentationsTransform(transforms) class TargetMaskConvertTransform(ItemTransform): def __init__(self): pass def encodes(self, x): img,mask = x #Convert to array mask = np.array(mask) # Aquí definimos cada clase en la máscara # uva: mask[mask==255]=1 # hojas: mask[mask==150]=2 # conductores: mask[mask==76]=3 mask[mask==74]=3 # madera: mask[mask==29]=4 mask[mask==25]=4 # Back to PILMask mask = PILMask.create(mask) return img, mask repo_id = "paascorb/practica3_Segmentation" learner = from_pretrained_fastai(repo_id) def transform_image(image): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") my_transforms = transformss.Compose([transformss.ToTensor(), transformss.Normalize( [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) image_aux = image return my_transforms(image_aux).unsqueeze(0).to(device) def predict(img): img = PIL.Image.fromarray(img, "RGB") image = transformss.Resize((480,640))(img) tensor = transform_image(image=image) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") learner.to(device) with torch.no_grad(): outputs = learner(tensor) outputs = torch.argmax(outputs,1) mask = np.array(outputs.cpu()) mask[mask==1]=255 mask[mask==2]=150 mask[mask==3]=76 mask[mask==4]=29 mask=np.reshape(mask,(480,640)) return Image.fromarray(mask.astype('uint8')) gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=[gr.outputs.Image(type="pil", label="Predicción")], examples=['color_155.jpg','color_154.jpg']).launch(share=False)