File size: 3,109 Bytes
bc5816a
 
2a020c3
 
 
bc5816a
45a9f67
2a020c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc5816a
2a020c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc5816a
45a9f67
2a020c3
 
 
 
 
 
 
 
 
 
 
 
 
 
3053875
45a9f67
bc5816a
45a9f67
 
2a020c3
04a4fb7
45a9f67
 
2a020c3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import gradio as gr
import requests
import json

API_URL = "https://api.openai.com/v1/chat/completions"

def predict(inputs, top_p, temperature, openai_api_key, chat_counter, chatbot=[], history=[]):
    messages = format_messages(chatbot, inputs, chat_counter)
    payload = create_payload(messages, top_p, temperature)
    response = make_request(API_URL, openai_api_key, payload)
    return process_response(response, history)

def format_messages(chatbot, inputs, chat_counter):
    messages = []
    if chat_counter != 0:
        for i in range(len(chatbot)):
            user_message = {"role": "user", "content": chatbot[i][0]}
            assistant_message = {"role": "assistant", "content": chatbot[i][1]}
            messages.extend([user_message, assistant_message])
    messages.append({"role": "user", "content": inputs})
    return messages

def create_payload(messages, top_p, temperature):
    return {
        "model": "gpt-4-1106-preview",
        "messages": messages,
        "temperature": temperature,
        "top_p": top_p,
        "n": 1,
        "stream": True,
        "presence_penalty": 0,
        "frequency_penalty": 0,
    }

def make_request(url, api_key, payload):
    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {api_key}"
    }
    response = requests.post(url, headers=headers, json=payload, stream=True)
    return response

def process_response(response, history):
    token_counter = 0 
    partial_words = "" 
    for chunk in response.iter_lines():
        if chunk:
            chunk_data = json.loads(chunk[6:])['choices'][0]['delta']
            if 'content' in chunk_data:
                partial_words += chunk_data['content']
                if token_counter == 0:
                    history.append(" " + partial_words)
                else:
                    history[-1] = partial_words
                token_counter += 1
    chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2)]
    return chat, history, token_counter

def setup_ui():
    with gr.Blocks() as demo:
        with gr.Column():
            openai_api_key = gr.Textbox(type='password', label="Insira sua chave de API OpenAI aqui")
            chatbot = gr.Chatbot() 
            inputs = gr.Textbox(placeholder="Olá!", label="Digite uma entrada e pressione Enter", lines=3)
            state = gr.State([])
            b1 = gr.Button(value="Executar", variant="primary")
            
            top_p = gr.Slider(minimum=0, maximum=1.0, value=1.0, step=0.05, label="Top-p")
            temperature = gr.Slider(minimum=0, maximum=1.0, value=1.0, step=0.05, label="Temperature")
            chat_counter = gr.Number(value=0, visible=False)

        inputs.submit(predict, [inputs, top_p, temperature, openai_api_key, chat_counter, chatbot, state], [chatbot, state, chat_counter])
        b1.click(predict, [inputs, top_p, temperature, openai_api_key, chat_counter, chatbot, state], [chatbot, state, chat_counter])

    return demo

def main():
    demo = setup_ui()
    demo.launch()

if __name__ == "__main__":
    main()