ChatGPTwithAPI / app.py
pablocst's picture
Update app.py
37cecac
raw
history blame
5.19 kB
import gradio as gr
import os
import json
import requests
#Streaming endpoint
API_URL = "https://api.openai.com/v1/chat/completions" #os.getenv("API_URL") + "/generate_stream"
#Testing with my Open AI Key
#OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
def predict(inputs, top_p, temperature, openai_api_key, chat_counter, chatbot=[], history=[]): #repetition_penalty, top_k
payload = {
"model": "gpt-4-1106-preview",
"messages": [{"role": "user", "content": f"{inputs}"}],
"temperature" : 1.0,
"top_p":1.0,
"n" : 1,
"stream": True,
"presence_penalty":0,
"frequency_penalty":0,
}
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {openai_api_key}"
}
print(f"chat_counter - {chat_counter}")
if chat_counter != 0 :
messages=[]
for data in chatbot:
temp1 = {}
temp1["role"] = "user"
temp1["content"] = data[0]
temp2 = {}
temp2["role"] = "assistant"
temp2["content"] = data[1]
messages.append(temp1)
messages.append(temp2)
temp3 = {}
temp3["role"] = "user"
temp3["content"] = inputs
messages.append(temp3)
#messages
payload = {
"model": "gpt-4-1106-preview",
"messages": messages, #[{"role": "user", "content": f"{inputs}"}],
"temperature" : temperature, #1.0,
"top_p": top_p, #1.0,
"n" : 1,
"stream": True,
"presence_penalty":0,
"frequency_penalty":0,
}
chat_counter+=1
history.append(inputs)
print(f"payload is - {payload}")
# make a POST request to the API endpoint using the requests.post method, passing in stream=True
response = requests.post(API_URL, headers=headers, json=payload, stream=True)
#response = requests.post(API_URL, headers=headers, json=payload, stream=True)
token_counter = 0
partial_words = ""
counter=0
for chunk in response.iter_lines():
#Skipping first chunk
if counter == 0:
counter+=1
continue
#counter+=1
# check whether each line is non-empty
if chunk.decode() :
chunk = chunk.decode()
# decode each line as response data is in bytes
if len(chunk) > 12 and "content" in json.loads(chunk[6:])['choices'][0]['delta']:
#if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0:
# break
partial_words = partial_words + json.loads(chunk[6:])['choices'][0]["delta"]["content"]
if token_counter == 0:
history.append(" " + partial_words)
else:
history[-1] = partial_words
chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ] # convert to tuples of list
token_counter+=1
yield chat, history, chat_counter # resembles {chatbot: chat, state: history}
def reset_textbox():
return gr.update(value='')
title = """<h1 align="center">🔥ChatGPT-4 Turbo API 🚀Streaming🚀</h1>"""
description = """Language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form:
```
User: <utterance>
Assistant: <utterance>
User: <utterance>
Assistant: <utterance>
...
```
In this app, you can explore the outputs of a gpt-3.5-turbo LLM.
"""
css = """
body { background-color: #333; color: #fff; }
#col_container {width: 1000px; margin-left: auto; margin-right: auto;}
#chatbot {height: 520px; overflow: auto; background-color: #222; color: #fff;}
.gradio-toolbar { background-color: #222; }
.text_input { background-color: #222; color: #fff; }
.label { color: #fff; }
.slider { background-color: #222; }
.button { background-color: #444; color: #fff; }
"""
with gr.Blocks(css=css) as demo:
gr.HTML(title)
with gr.Column(elem_id="col_container"):
openai_api_key = gr.Textbox(type='password', label="Insira sua chave de API OpenAI aqui")
chatbot = gr.Chatbot(elem_id="chatbot")
inputs = gr.Textbox(placeholder="Olá!", label="Digite uma entrada e pressione Enter", lines=3)
state = gr.State([])
b1 = gr.Button(value="Executar", variant="primary")
# Parâmetros
with gr.Accordion("Parameters", open=False):
top_p = gr.Slider(minimum=0, maximum=1.0, value=1.0, step=0.05, label="Top-p")
temperature = gr.Slider(minimum=0, maximum=5.0, value=1.0, step=0.1, label="Temperature")
chat_counter = gr.Number(value=0, visible=False)
# Associando a função 'predict' ao campo de entrada 'inputs' e ao botão 'b1'
inputs.submit(predict, inputs=[inputs, top_p, temperature, openai_api_key, chat_counter, chatbot, state], outputs=[chatbot, state, chat_counter])
b1.click(predict, inputs=[inputs, top_p, temperature, openai_api_key, chat_counter, chatbot, state], outputs=[chatbot, state, chat_counter])
# Botão para limpar o campo de texto
b1.click(reset_textbox, inputs=[], outputs=[inputs])
demo.queue().launch(debug=True)