File size: 6,419 Bytes
899c526
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import numpy as np
import os.path as osp

import torch
from ..lietorch import SE3

from scipy.spatial.transform import Rotation

def parse_list(filepath, skiprows=0):
    """ read list data """
    data = np.loadtxt(filepath, delimiter=' ', dtype=np.unicode_, skiprows=skiprows)
    return data

def associate_frames(tstamp_image, tstamp_depth, tstamp_pose, max_dt=1.0):
    """ pair images, depths, and poses """
    associations = []
    for i, t in enumerate(tstamp_image):
        if tstamp_pose is None:
            j = np.argmin(np.abs(tstamp_depth - t))
            if (np.abs(tstamp_depth[j] - t) < max_dt):
                associations.append((i, j))

        else:
            j = np.argmin(np.abs(tstamp_depth - t))
            k = np.argmin(np.abs(tstamp_pose - t))
        
            if (np.abs(tstamp_depth[j] - t) < max_dt) and \
                    (np.abs(tstamp_pose[k] - t) < max_dt):
                associations.append((i, j, k))
            
    return associations

def loadtum(datapath, frame_rate=-1):
    """ read video data in tum-rgbd format """
    if osp.isfile(osp.join(datapath, 'groundtruth.txt')):
        pose_list = osp.join(datapath, 'groundtruth.txt')
    
    elif osp.isfile(osp.join(datapath, 'pose.txt')):
        pose_list = osp.join(datapath, 'pose.txt')

    else:
        return None, None, None, None

    image_list = osp.join(datapath, 'rgb.txt')
    depth_list = osp.join(datapath, 'depth.txt')

    calib_path = osp.join(datapath, 'calibration.txt')
    intrinsic = None
    if osp.isfile(calib_path):
        intrinsic = np.loadtxt(calib_path, delimiter=' ')
        intrinsic = intrinsic.astype(np.float64)

    image_data = parse_list(image_list)
    depth_data = parse_list(depth_list)
    pose_data = parse_list(pose_list, skiprows=1)
    pose_vecs = pose_data[:,1:].astype(np.float64)

    tstamp_image = image_data[:,0].astype(np.float64)
    tstamp_depth = depth_data[:,0].astype(np.float64)
    tstamp_pose = pose_data[:,0].astype(np.float64)
    associations = associate_frames(tstamp_image, tstamp_depth, tstamp_pose)

    # print(len(tstamp_image))
    # print(len(associations))

    indicies = range(len(associations))[::5]

    # indicies = [ 0 ]
    # for i in range(1, len(associations)):
    #     t0 = tstamp_image[associations[indicies[-1]][0]]
    #     t1 = tstamp_image[associations[i][0]]
    #     if t1 - t0 > 1.0 / frame_rate:
    #         indicies += [ i ]

    images, poses, depths, intrinsics, tstamps = [], [], [], [], []
    for ix in indicies:
        (i, j, k) = associations[ix]
        images += [ osp.join(datapath, image_data[i,1]) ]
        depths += [ osp.join(datapath, depth_data[j,1]) ]
        poses += [ pose_vecs[k] ]
        tstamps += [ tstamp_image[i] ]
        
        if intrinsic is not None:
            intrinsics += [ intrinsic ]

    return images, depths, poses, intrinsics, tstamps


def all_pairs_distance_matrix(poses, beta=2.5):
    """ compute distance matrix between all pairs of poses """
    poses = np.array(poses, dtype=np.float32)
    poses[:,:3] *= beta # scale to balence rot + trans
    poses = SE3(torch.from_numpy(poses))

    r = (poses[:,None].inv() * poses[None,:]).log()
    return r.norm(dim=-1).cpu().numpy()

def pose_matrix_to_quaternion(pose):
    """ convert 4x4 pose matrix to (t, q) """
    q = Rotation.from_matrix(pose[:3, :3]).as_quat()
    return np.concatenate([pose[:3, 3], q], axis=0)

def compute_distance_matrix_flow(poses, disps, intrinsics):
    """ compute flow magnitude between all pairs of frames """
    if not isinstance(poses, SE3):
        poses = torch.from_numpy(poses).float().cuda()[None]
        poses = SE3(poses).inv()

        disps = torch.from_numpy(disps).float().cuda()[None]
        intrinsics = torch.from_numpy(intrinsics).float().cuda()[None]

    N = poses.shape[1]
    
    ii, jj = torch.meshgrid(torch.arange(N), torch.arange(N))
    ii = ii.reshape(-1).cuda()
    jj = jj.reshape(-1).cuda()

    MAX_FLOW = 100.0
    matrix = np.zeros((N, N), dtype=np.float32)

    s = 2048
    for i in range(0, ii.shape[0], s):
        flow1, val1 = pops.induced_flow(poses, disps, intrinsics, ii[i:i+s], jj[i:i+s])
        flow2, val2 = pops.induced_flow(poses, disps, intrinsics, jj[i:i+s], ii[i:i+s])
        
        flow = torch.stack([flow1, flow2], dim=2)
        val = torch.stack([val1, val2], dim=2)
        
        mag = flow.norm(dim=-1).clamp(max=MAX_FLOW)
        mag = mag.view(mag.shape[1], -1)
        val = val.view(val.shape[1], -1)

        mag = (mag * val).mean(-1) / val.mean(-1)
        mag[val.mean(-1) < 0.7] = np.inf

        i1 = ii[i:i+s].cpu().numpy()
        j1 = jj[i:i+s].cpu().numpy()
        matrix[i1, j1] = mag.cpu().numpy()

    return matrix


def compute_distance_matrix_flow2(poses, disps, intrinsics, beta=0.4):
    """ compute flow magnitude between all pairs of frames """
    # if not isinstance(poses, SE3):
    #     poses = torch.from_numpy(poses).float().cuda()[None]
    #     poses = SE3(poses).inv()

    #     disps = torch.from_numpy(disps).float().cuda()[None]
    #     intrinsics = torch.from_numpy(intrinsics).float().cuda()[None]

    N = poses.shape[1]
    
    ii, jj = torch.meshgrid(torch.arange(N), torch.arange(N))
    ii = ii.reshape(-1)
    jj = jj.reshape(-1)

    MAX_FLOW = 128.0
    matrix = np.zeros((N, N), dtype=np.float32)

    s = 2048
    for i in range(0, ii.shape[0], s):
        flow1a, val1a = pops.induced_flow(poses, disps, intrinsics, ii[i:i+s], jj[i:i+s], tonly=True)
        flow1b, val1b = pops.induced_flow(poses, disps, intrinsics, ii[i:i+s], jj[i:i+s])
        flow2a, val2a = pops.induced_flow(poses, disps, intrinsics, jj[i:i+s], ii[i:i+s], tonly=True)
        flow2b, val2b = pops.induced_flow(poses, disps, intrinsics, ii[i:i+s], jj[i:i+s])

        flow1 = flow1a + beta * flow1b
        val1 = val1a * val2b

        flow2 = flow2a + beta * flow2b
        val2 = val2a * val2b
        
        flow = torch.stack([flow1, flow2], dim=2)
        val = torch.stack([val1, val2], dim=2)
        
        mag = flow.norm(dim=-1).clamp(max=MAX_FLOW)
        mag = mag.view(mag.shape[1], -1)
        val = val.view(val.shape[1], -1)

        mag = (mag * val).mean(-1) / val.mean(-1)
        mag[val.mean(-1) < 0.8] = np.inf

        i1 = ii[i:i+s].cpu().numpy()
        j1 = jj[i:i+s].cpu().numpy()
        matrix[i1, j1] = mag.cpu().numpy()

    return matrix