File size: 28,351 Bytes
899c526
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
import torch

TORCH_MAJOR = int(torch.__version__.split('.')[0])
TORCH_MINOR = int(torch.__version__.split('.')[1])

from torch.types import _TensorOrTensors
if TORCH_MAJOR == 1 and TORCH_MINOR < 8:
    from torch._six import container_abcs, istuple
else:
    import collections.abc as container_abcs

import torch.testing
from torch.overrides import is_tensor_like
from itertools import product
import warnings
from typing import Callable, Union, Optional, Iterable, List

def zero_gradients(x):
    if isinstance(x, torch.Tensor):
        if x.grad is not None:
            x.grad.detach_()
            x.grad.zero_()
    elif isinstance(x, container_abcs.Iterable):
        for elem in x:
            zero_gradients(elem)


def make_jacobian(input, num_out):
    if is_tensor_like(input):
        if not input.is_floating_point() and not input.is_complex():
            return None
        if not input.requires_grad:
            return None
        return input.new_zeros((input.nelement(), num_out), dtype=input.dtype, layout=torch.strided)
    elif isinstance(input, container_abcs.Iterable) and not isinstance(input, str):
        jacobians = list(filter(
            lambda x: x is not None, (make_jacobian(elem, num_out) for elem in input)))
        if not jacobians:
            return None
        return type(input)(jacobians)  # type: ignore
    else:
        return None


def iter_tensors(x: Union[torch.Tensor, Iterable[torch.Tensor]], only_requiring_grad: bool = False) -> Iterable[torch.Tensor]:
    if is_tensor_like(x):
        # mypy doesn't narrow type of `x` to torch.Tensor
        if x.requires_grad or not only_requiring_grad:  # type: ignore
            yield x  # type: ignore
    elif isinstance(x, container_abcs.Iterable) and not isinstance(x, str):
        for elem in x:
            for result in iter_tensors(elem, only_requiring_grad):
                yield result

def get_numerical_jacobian(fn, input, target=None, eps=1e-3, grad_out=1.0):
    """
    input: input to `fn`
    target: the Tensors wrt whom Jacobians are calculated (default=`input`)
    grad_out: grad output value used to calculate gradients.

    Note that `target` may not even be part of `input` to `fn`, so please be
    **very careful** in this to not clone `target`.
    """
    if target is None:
        target = input
    output_size = fn(input).numel()
    jacobian = make_jacobian(target, output_size)

    # It's much easier to iterate over flattened lists of tensors.
    # These are reference to the same objects in jacobian, so any changes
    # will be reflected in it as well.
    x_tensors = iter_tensors(target, True)
    j_tensors = iter_tensors(jacobian)

    def update_jacobians(x, idx, d, d_idx, is_mkldnn=False):

        # compute_jacobian only works for pure real
        # or pure imaginary delta
        def compute_gradient(delta):
            # we currently assume that the norm of delta equals eps
            assert(delta == eps or delta == (eps * 1j))

            def fn_out():
                if not is_mkldnn:
                    # x is a view into input and so this works
                    return fn(input).clone()
                else:
                    # convert the dense tensor back to have mkldnn layout
                    return fn([x.to_mkldnn()])

            orig = x[idx].item()
            x[idx] = orig - delta
            outa = fn_out()
            x[idx] = orig + delta
            outb = fn_out()
            x[idx] = orig
            r = (outb - outa) / (2 * eps)
            return r.detach().reshape(-1)

        # for details on the algorithm used here, refer:
        # Section 3.5.3 https://arxiv.org/pdf/1701.00392.pdf
        # s = fn(z) where z = x for real valued input
        # and z = x + yj for complex valued input
        ds_dx = compute_gradient(eps)
        if x.is_complex():  # C -> C, C -> R
            ds_dy = compute_gradient(eps * 1j)
            # conjugate wirtinger derivative
            conj_w_d = 0.5 * (ds_dx + ds_dy * 1j)
            # wirtinger derivative
            w_d = 0.5 * (ds_dx - ds_dy * 1j)
            d[d_idx] = grad_out.conjugate() * conj_w_d + grad_out * w_d.conj()
        elif ds_dx.is_complex():  # R -> C
            # w_d = conj_w_d = 0.5 * ds_dx
            # dL_dz_conj = 0.5 * [grad_out.conj() * ds_dx + grad_out * ds_dx.conj()]
            #            = 0.5 * [grad_out.conj() * ds_dx + (grad_out.conj() * ds_dx).conj()]
            #            = 0.5 * 2 * real(grad_out.conj() * ds_dx)
            #            = real(grad_out.conj() * ds_dx)
            d[d_idx] = torch.real(grad_out.conjugate() * ds_dx)
        else:   # R -> R
            d[d_idx] = ds_dx * grad_out

    # TODO: compare structure
    for x_tensor, d_tensor in zip(x_tensors, j_tensors):
        if x_tensor.is_sparse:
            def get_stride(size):
                dim = len(size)
                tmp = 1
                stride = [0] * dim
                for i in reversed(range(dim)):
                    stride[i] = tmp
                    tmp *= size[i]
                return stride

            x_nnz = x_tensor._nnz()
            x_size = list(x_tensor.size())
            x_indices = x_tensor._indices().t()
            x_values = x_tensor._values()
            x_stride = get_stride(x_size)

            # Use .data here to get around the version check
            x_values = x_values.data

            for i in range(x_nnz):
                x_value = x_values[i]
                for x_idx in product(*[range(m) for m in x_values.size()[1:]]):
                    indices = x_indices[i].tolist() + list(x_idx)
                    d_idx = sum(indices[k] * x_stride[k] for k in range(len(x_size)))
                    update_jacobians(x_value, x_idx, d_tensor, d_idx)
        elif x_tensor.layout == torch._mkldnn:  # type: ignore
            # Use .data here to get around the version check
            x_tensor = x_tensor.data
            if len(input) != 1:
                raise ValueError('gradcheck currently only supports functions with 1 input, but got: ',
                                 len(input))
            for d_idx, x_idx in enumerate(product(*[range(m) for m in x_tensor.size()])):
                # this is really inefficient, but without indexing implemented, there's
                # not really a better way than converting back and forth
                x_tensor_dense = x_tensor.to_dense()
                update_jacobians(x_tensor_dense, x_idx, d_tensor, d_idx, is_mkldnn=True)
        else:
            # Use .data here to get around the version check
            x_tensor = x_tensor.data
            for d_idx, x_idx in enumerate(product(*[range(m) for m in x_tensor.size()])):
                update_jacobians(x_tensor, x_idx, d_tensor, d_idx)

    return jacobian


def get_analytical_jacobian(input, output, nondet_tol=0.0, grad_out=1.0):
    # it is easier to call to_dense() on the sparse output than
    # to modify analytical jacobian
    if output.is_sparse:
        raise ValueError('Sparse output is not supported at gradcheck yet. '
                         'Please call to_dense() on the output of fn for gradcheck.')
    if output.layout == torch._mkldnn:  # type: ignore
        raise ValueError('MKLDNN output is not supported at gradcheck yet. '
                         'Please call to_dense() on the output of fn for gradcheck.')
    diff_input_list = list(iter_tensors(input, True))
    jacobian = make_jacobian(input, output.numel())
    jacobian_reentrant = make_jacobian(input, output.numel())
    grad_output = torch.zeros_like(output, memory_format=torch.legacy_contiguous_format)
    flat_grad_output = grad_output.view(-1)
    reentrant = True
    correct_grad_sizes = True
    correct_grad_types = True

    for i in range(flat_grad_output.numel()):
        flat_grad_output.zero_()
        flat_grad_output[i] = grad_out
        for jacobian_c in (jacobian, jacobian_reentrant):
            grads_input = torch.autograd.grad(output, diff_input_list, grad_output,
                                              retain_graph=True, allow_unused=True)
            for jacobian_x, d_x, x in zip(jacobian_c, grads_input, diff_input_list):
                if d_x is not None and d_x.size() != x.size():
                    correct_grad_sizes = False
                elif d_x is not None and d_x.dtype != x.dtype:
                    correct_grad_types = False
                elif jacobian_x.numel() != 0:
                    if d_x is None:
                        jacobian_x[:, i].zero_()
                    else:
                        d_x_dense = d_x.to_dense() if not d_x.layout == torch.strided else d_x
                        assert jacobian_x[:, i].numel() == d_x_dense.numel()
                        jacobian_x[:, i] = d_x_dense.contiguous().view(-1)

    for jacobian_x, jacobian_reentrant_x in zip(jacobian, jacobian_reentrant):
        if jacobian_x.numel() != 0 and (jacobian_x - jacobian_reentrant_x).abs().max() > nondet_tol:
            reentrant = False

    return jacobian, reentrant, correct_grad_sizes, correct_grad_types


def _as_tuple(x):
    if TORCH_MAJOR == 1 and TORCH_MINOR < 8:
        b_tuple = istuple(x)  
    else:
        b_tuple = isinstance(x, tuple)
    
    if b_tuple:
        return x
    elif isinstance(x, list):
        return tuple(x)
    else:
        return x,
    


def _differentiable_outputs(x):
    return tuple(o for o in _as_tuple(x) if o.requires_grad)


# Note [VarArg of Tensors]
# ~~~~~~~~~~~~~~~~~~~~~~~~
# 'func' accepts a vararg of tensors, which isn't expressable in the type system at the moment.
# If https://mypy.readthedocs.io/en/latest/additional_features.html?highlight=callable#extended-callable-types is accepted,
# the '...' first argument of Callable can be replaced with VarArg(Tensor).
# For now, we permit any input.
# the '...' first argument of Callable can be replaced with VarArg(Tensor).
# For now, we permit any input.

def gradcheck(
    func: Callable[..., Union[_TensorOrTensors]],  # See Note [VarArg of Tensors]
    inputs: _TensorOrTensors,
    eps: float = 1e-6,
    atol: float = 1e-5,
    rtol: float = 1e-3,
    raise_exception: bool = True,
    check_sparse_nnz: bool = False,
    nondet_tol: float = 0.0,
    check_undefined_grad: bool = True,
    check_grad_dtypes: bool = False
) -> bool:
    r"""Check gradients computed via small finite differences against analytical
    gradients w.r.t. tensors in :attr:`inputs` that are of floating point or complex type
    and with ``requires_grad=True``.

    The check between numerical and analytical gradients uses :func:`~torch.allclose`.

    For complex functions, no notion of Jacobian exists. Gradcheck verifies if the numerical and
    analytical values of Wirtinger and Conjugate Wirtinger derivative are consistent. The gradient
    computation is done under the assumption that the overall function has a real valued output.
    For functions with complex output, gradcheck compares the numerical and analytical gradients
    for two values of :attr:`grad_output`: 1 and 1j. For more details, check out
    :ref:`complex_autograd-doc`.

    .. note::
        The default values are designed for :attr:`input` of double precision.
        This check will likely fail if :attr:`input` is of less precision, e.g.,
        ``FloatTensor``.

    .. warning::
       If any checked tensor in :attr:`input` has overlapping memory, i.e.,
       different indices pointing to the same memory address (e.g., from
       :func:`torch.expand`), this check will likely fail because the numerical
       gradients computed by point perturbation at such indices will change
       values at all other indices that share the same memory address.

    Args:
        func (function): a Python function that takes Tensor inputs and returns
            a Tensor or a tuple of Tensors
        inputs (tuple of Tensor or Tensor): inputs to the function
        eps (float, optional): perturbation for finite differences
        atol (float, optional): absolute tolerance
        rtol (float, optional): relative tolerance
        raise_exception (bool, optional): indicating whether to raise an exception if
            the check fails. The exception gives more information about the
            exact nature of the failure. This is helpful when debugging gradchecks.
        check_sparse_nnz (bool, optional): if True, gradcheck allows for SparseTensor input,
            and for any SparseTensor at input, gradcheck will perform check at nnz positions only.
        nondet_tol (float, optional): tolerance for non-determinism. When running
            identical inputs through the differentiation, the results must either match
            exactly (default, 0.0) or be within this tolerance.
        check_undefined_grad (bool, options): if True, check if undefined output grads
            are supported and treated as zeros, for ``Tensor`` outputs.

    Returns:
        True if all differences satisfy allclose condition
    """
    def fail_test(msg):
        if raise_exception:
            raise RuntimeError(msg)
        return False

    tupled_inputs = _as_tuple(inputs)
    if not check_sparse_nnz and any(t.is_sparse for t in tupled_inputs if isinstance(t, torch.Tensor)):
        return fail_test('gradcheck expects all tensor inputs are dense when check_sparse_nnz is set to False.')

    # Make sure that gradients are saved for at least one input
    any_input_requiring_grad = False
    for idx, inp in enumerate(tupled_inputs):
        if is_tensor_like(inp) and inp.requires_grad:
            if not (inp.dtype == torch.float64 or inp.dtype == torch.complex128):
                warnings.warn(
                    f'Input #{idx} requires gradient and '
                    'is not a double precision floating point or complex. '
                    'This check will likely fail if all the inputs are '
                    'not of double precision floating point or complex. ')
            content = inp._values() if inp.is_sparse else inp
            # TODO: To cover more problematic cases, replace stride = 0 check with
            # "any overlap in memory" once we have a proper function to check it.
            if content.layout is not torch._mkldnn:  # type: ignore
                if not all(st > 0 or sz <= 1 for st, sz in zip(content.stride(), content.size())):
                    raise RuntimeError(
                        'The {}th input has a dimension with stride 0. gradcheck only '
                        'supports inputs that are non-overlapping to be able to '
                        'compute the numerical gradients correctly. You should call '
                        '.contiguous on the input before passing it to gradcheck.')
            any_input_requiring_grad = True
            inp.retain_grad()
    if not any_input_requiring_grad:
        raise ValueError(
            'gradcheck expects at least one input tensor to require gradient, '
            'but none of the them have requires_grad=True.')

    func_out = func(*tupled_inputs)
    output = _differentiable_outputs(func_out)

    if not output:
        for i, o in enumerate(func_out):
            def fn(input):
                return _as_tuple(func(*input))[i]
            numerical = get_numerical_jacobian(fn, tupled_inputs, eps=eps)
            for n in numerical:
                if torch.ne(n, 0).sum() > 0:
                    return fail_test('Numerical gradient for function expected to be zero')
        return True

    for i, o in enumerate(output):
        if not o.requires_grad:
            continue

        def fn(input):
            return _as_tuple(func(*input))[i]

        analytical, reentrant, correct_grad_sizes, correct_grad_types = get_analytical_jacobian(tupled_inputs,
                                                                                                o,
                                                                                                nondet_tol=nondet_tol)
        numerical = get_numerical_jacobian(fn, tupled_inputs, eps=eps)

        return analytical, numerical

        out_is_complex = o.is_complex()

        if out_is_complex:
            # analytical vjp with grad_out = 1.0j
            analytical_with_imag_grad_out, reentrant_with_imag_grad_out, \
                correct_grad_sizes_with_imag_grad_out, correct_grad_types_with_imag_grad_out \
                = get_analytical_jacobian(tupled_inputs, o, nondet_tol=nondet_tol, grad_out=1j)
            numerical_with_imag_grad_out = get_numerical_jacobian(fn, tupled_inputs, eps=eps, grad_out=1j)

        if not correct_grad_types and check_grad_dtypes:
            return fail_test('Gradient has dtype mismatch')

        if out_is_complex and not correct_grad_types_with_imag_grad_out and check_grad_dtypes:
            return fail_test('Gradient (calculated using complex valued grad output) has dtype mismatch')

        if not correct_grad_sizes:
            return fail_test('Analytical gradient has incorrect size')

        if out_is_complex and not correct_grad_sizes_with_imag_grad_out:
            return fail_test('Analytical gradient (calculated using complex valued grad output) has incorrect size')

        def checkIfNumericalAnalyticAreClose(a, n, j, error_str=''):
            if not torch.allclose(a, n, rtol, atol):
                return fail_test(error_str + 'Jacobian mismatch for output %d with respect to input %d,\n'
                                 'numerical:%s\nanalytical:%s\n' % (i, j, n, a))

        inp_tensors = iter_tensors(tupled_inputs, True)

        for j, (a, n, inp) in enumerate(zip(analytical, numerical, inp_tensors)):
            if a.numel() != 0 or n.numel() != 0:
                if o.is_complex():
                    # C -> C, R -> C
                    a_with_imag_grad_out = analytical_with_imag_grad_out[j]
                    n_with_imag_grad_out = numerical_with_imag_grad_out[j]
                    checkIfNumericalAnalyticAreClose(a_with_imag_grad_out, n_with_imag_grad_out, j,
                                                     "Gradients failed to compare equal for grad output = 1j. ")
                if inp.is_complex():
                    # C -> R, C -> C
                    checkIfNumericalAnalyticAreClose(a, n, j,
                                                     "Gradients failed to compare equal for grad output = 1. ")
                else:
                    # R -> R, R -> C
                    checkIfNumericalAnalyticAreClose(a, n, j)


        def not_reentrant_error(error_str=''):
            error_msg = "Backward" + error_str + " is not reentrant, i.e., running backward with same \
                        input and grad_output multiple times gives different values, \
                        although analytical gradient matches numerical gradient. \
                        The tolerance for nondeterminism was {}.".format(nondet_tol)
            return fail_test(error_msg)

        if not reentrant:
            return not_reentrant_error()

        if out_is_complex and not reentrant_with_imag_grad_out:
            return not_reentrant_error(' (calculated using complex valued grad output)')

    # check if the backward multiplies by grad_output
    output = _differentiable_outputs(func(*tupled_inputs))
    if any([o.requires_grad for o in output]):
        diff_input_list: List[torch.Tensor] = list(iter_tensors(tupled_inputs, True))
        if not diff_input_list:
            raise RuntimeError("no Tensors requiring grad found in input")
        grads_input = torch.autograd.grad(output, diff_input_list,
                                          [torch.zeros_like(o, memory_format=torch.legacy_contiguous_format) for o in output],
                                          allow_unused=True)
        for gi, di in zip(grads_input, diff_input_list):
            if gi is None:
                continue
            if isinstance(gi, torch.Tensor) and gi.layout != torch.strided:
                if gi.layout != di.layout:
                    return fail_test('grad is incorrect layout (' + str(gi.layout) + ' is not ' + str(di.layout) + ')')
                if gi.layout == torch.sparse_coo:
                    if gi.sparse_dim() != di.sparse_dim():
                        return fail_test('grad is sparse tensor, but has incorrect sparse_dim')
                    if gi.dense_dim() != di.dense_dim():
                        return fail_test('grad is sparse tensor, but has incorrect dense_dim')
                gi = gi.to_dense()
                di = di.to_dense()
            if not gi.eq(0).all():
                return fail_test('backward not multiplied by grad_output')
            if gi.dtype != di.dtype or gi.device != di.device or gi.is_sparse != di.is_sparse:
                return fail_test("grad is incorrect type")
            if gi.size() != di.size():
                return fail_test('grad is incorrect size')

        if check_undefined_grad:
            def warn_bc_breaking():
                warnings.warn((
                    'Backwards compatibility: New undefined gradient support checking '
                    'feature is enabled by default, but it may break existing callers '
                    'of this function. If this is true for you, you can call this '
                    'function with "check_undefined_grad=False" to disable the feature'))

            def check_undefined_grad_support(output_to_check):
                grads_output = [torch.zeros_like(o, memory_format=torch.legacy_contiguous_format) for o in output_to_check]
                try:
                    grads_input = torch.autograd.grad(output_to_check,
                                                      diff_input_list,
                                                      grads_output,
                                                      allow_unused=True)
                except RuntimeError:
                    warn_bc_breaking()
                    return fail_test((
                        'Expected backward function to handle undefined output grads. '
                        'Please look at "Notes about undefined output gradients" in '
                        '"tools/autograd/derivatives.yaml"'))

                for gi, i in zip(grads_input, diff_input_list):
                    if (gi is not None) and (not gi.eq(0).all()):
                        warn_bc_breaking()
                        return fail_test((
                            'Expected all input grads to be undefined or zero when all output grads are undefined '
                            'or zero. Please look at "Notes about undefined output gradients" in '
                            '"tools/autograd/derivatives.yaml"'))
                return True

            # All backward functions must work properly if all output grads are undefined
            outputs_to_check = [[
                torch._C._functions.UndefinedGrad()(o) for o in _differentiable_outputs(func(*tupled_inputs))
                # This check filters out Tensor-likes that aren't instances of Tensor.
                if isinstance(o, torch.Tensor)
            ]]

            # If there are multiple output grads, we should be able to undef one at a time without error
            if len(outputs_to_check[0]) > 1:
                for undef_grad_idx in range(len(output)):
                    output_to_check = _differentiable_outputs(func(*tupled_inputs))
                    outputs_to_check.append([
                        torch._C._functions.UndefinedGrad()(o) if idx == undef_grad_idx else o
                        for idx, o in enumerate(output_to_check)])

            for output_to_check in outputs_to_check:
                if not check_undefined_grad_support(output_to_check):
                    return False

    return True


def gradgradcheck(
    func: Callable[..., _TensorOrTensors],  # See Note [VarArg of Tensors]
    inputs: _TensorOrTensors,
    grad_outputs: Optional[_TensorOrTensors] = None,
    eps: float = 1e-6,
    atol: float = 1e-5,
    rtol: float = 1e-3,
    gen_non_contig_grad_outputs: bool = False,
    raise_exception: bool = True,
    nondet_tol: float = 0.0,
    check_undefined_grad: bool = True,
    check_grad_dtypes: bool = False
) -> bool:
    r"""Check gradients of gradients computed via small finite differences
    against analytical gradients w.r.t. tensors in :attr:`inputs` and
    :attr:`grad_outputs` that are of floating point or complex type and with
    ``requires_grad=True``.

    This function checks that backpropagating through the gradients computed
    to the given :attr:`grad_outputs` are correct.

    The check between numerical and analytical gradients uses :func:`~torch.allclose`.

    .. note::
        The default values are designed for :attr:`input` and
        :attr:`grad_outputs` of double precision. This check will likely fail if
        they are of less precision, e.g., ``FloatTensor``.

    .. warning::
       If any checked tensor in :attr:`input` and :attr:`grad_outputs` has
       overlapping memory, i.e., different indices pointing to the same memory
       address (e.g., from :func:`torch.expand`), this check will likely fail
       because the numerical gradients computed by point perturbation at such
       indices will change values at all other indices that share the same
       memory address.

    Args:
        func (function): a Python function that takes Tensor inputs and returns
            a Tensor or a tuple of Tensors
        inputs (tuple of Tensor or Tensor): inputs to the function
        grad_outputs (tuple of Tensor or Tensor, optional): The gradients with
            respect to the function's outputs.
        eps (float, optional): perturbation for finite differences
        atol (float, optional): absolute tolerance
        rtol (float, optional): relative tolerance
        gen_non_contig_grad_outputs (bool, optional): if :attr:`grad_outputs` is
            ``None`` and :attr:`gen_non_contig_grad_outputs` is ``True``, the
            randomly generated gradient outputs are made to be noncontiguous
        raise_exception (bool, optional): indicating whether to raise an exception if
            the check fails. The exception gives more information about the
            exact nature of the failure. This is helpful when debugging gradchecks.
        nondet_tol (float, optional): tolerance for non-determinism. When running
            identical inputs through the differentiation, the results must either match
            exactly (default, 0.0) or be within this tolerance. Note that a small amount
            of nondeterminism in the gradient will lead to larger inaccuracies in
            the second derivative.
        check_undefined_grad (bool, options): if True, check if undefined output grads
            are supported and treated as zeros

    Returns:
        True if all differences satisfy allclose condition
    """
    tupled_inputs = _as_tuple(inputs)

    if grad_outputs is None:
        # If grad_outputs is not specified, create random Tensors of the same
        # shape, type, and device as the outputs
        def randn_like(x):
            y = torch.testing.randn_like(
                x if (x.is_floating_point() or x.is_complex()) else x.double(), memory_format=torch.legacy_contiguous_format)
            if gen_non_contig_grad_outputs:
                y = torch.testing.make_non_contiguous(y)
            return y.requires_grad_()
        outputs = _as_tuple(func(*tupled_inputs))
        tupled_grad_outputs = tuple(randn_like(x) for x in outputs)
    else:
        tupled_grad_outputs = _as_tuple(grad_outputs)

    num_outputs = len(tupled_grad_outputs)

    def new_func(*args):
        input_args = args[:-num_outputs]
        grad_outputs = args[-num_outputs:]
        outputs = _differentiable_outputs(func(*input_args))
        input_args = tuple(x for x in input_args if isinstance(x, torch.Tensor) and x.requires_grad)
        grad_inputs = torch.autograd.grad(outputs, input_args, grad_outputs, create_graph=True)
        return grad_inputs

    return gradcheck(new_func, tupled_inputs + tupled_grad_outputs, eps, atol, rtol, raise_exception,
                     nondet_tol=nondet_tol, check_undefined_grad=check_undefined_grad,
                     check_grad_dtypes=check_grad_dtypes)