Spaces:
Runtime error
Runtime error
import torch | |
import numpy as np | |
import torch.nn.functional as F | |
from . import fastba | |
from . import altcorr | |
from . import lietorch | |
from .lietorch import SE3 | |
from .net import VONet | |
from .utils import Timer, flatmeshgrid | |
from . import projective_ops as pops | |
autocast = torch.cuda.amp.autocast | |
Id = SE3.Identity(1, device="cuda") | |
class DPVO: | |
def __init__(self, cfg, network, ht=480, wd=640): | |
self.cfg = cfg | |
self.load_weights(network) | |
self.is_initialized = False | |
self.enable_timing = False | |
self.n = 0 # number of frames | |
self.m = 0 # number of patches | |
self.M = self.cfg.PATCHES_PER_FRAME | |
self.N = self.cfg.BUFFER_SIZE | |
self.ht = ht # image height | |
self.wd = wd # image width | |
DIM = self.DIM | |
RES = self.RES | |
### state attributes ### | |
self.tlist = [] | |
self.counter = 0 | |
# dummy image for visualization | |
self.image_ = torch.zeros(self.ht, self.wd, 3, dtype=torch.uint8, device="cpu") | |
self.tstamps_ = torch.zeros(self.N, dtype=torch.float64, device="cuda") | |
self.poses_ = torch.zeros(self.N, 7, dtype=torch.float32, device="cuda") | |
self.patches_ = torch.zeros( | |
self.N, self.M, 3, self.P, self.P, dtype=torch.float, device="cuda" | |
) | |
self.intrinsics_ = torch.zeros(self.N, 4, dtype=torch.float, device="cuda") | |
self.points_ = torch.zeros(self.N * self.M, 3, dtype=torch.float, device="cuda") | |
self.colors_ = torch.zeros(self.N, self.M, 3, dtype=torch.uint8, device="cuda") | |
self.index_ = torch.zeros(self.N, self.M, dtype=torch.long, device="cuda") | |
self.index_map_ = torch.zeros(self.N, dtype=torch.long, device="cuda") | |
### network attributes ### | |
self.mem = 32 | |
if self.cfg.MIXED_PRECISION: | |
self.kwargs = kwargs = {"device": "cuda", "dtype": torch.half} | |
else: | |
self.kwargs = kwargs = {"device": "cuda", "dtype": torch.float} | |
self.imap_ = torch.zeros(self.mem, self.M, DIM, **kwargs) | |
self.gmap_ = torch.zeros(self.mem, self.M, 128, self.P, self.P, **kwargs) | |
ht = ht // RES | |
wd = wd // RES | |
self.fmap1_ = torch.zeros(1, self.mem, 128, ht // 1, wd // 1, **kwargs) | |
self.fmap2_ = torch.zeros(1, self.mem, 128, ht // 4, wd // 4, **kwargs) | |
# feature pyramid | |
self.pyramid = (self.fmap1_, self.fmap2_) | |
self.net = torch.zeros(1, 0, DIM, **kwargs) | |
self.ii = torch.as_tensor([], dtype=torch.long, device="cuda") | |
self.jj = torch.as_tensor([], dtype=torch.long, device="cuda") | |
self.kk = torch.as_tensor([], dtype=torch.long, device="cuda") | |
# initialize poses to identity matrix | |
self.poses_[:, 6] = 1.0 | |
# store relative poses for removed frames | |
self.delta = {} | |
def load_weights(self, network): | |
# load network from checkpoint file | |
if isinstance(network, str): | |
from collections import OrderedDict | |
state_dict = torch.load(network) | |
new_state_dict = OrderedDict() | |
for k, v in state_dict.items(): | |
if "update.lmbda" not in k: | |
new_state_dict[k.replace("module.", "")] = v | |
self.network = VONet() | |
self.network.load_state_dict(new_state_dict) | |
else: | |
self.network = network | |
# steal network attributes | |
self.DIM = self.network.DIM | |
self.RES = self.network.RES | |
self.P = self.network.P | |
self.network.cuda() | |
self.network.eval() | |
# if self.cfg.MIXED_PRECISION: | |
# self.network.half() | |
def poses(self): | |
return self.poses_.view(1, self.N, 7) | |
def patches(self): | |
return self.patches_.view(1, self.N * self.M, 3, 3, 3) | |
def intrinsics(self): | |
return self.intrinsics_.view(1, self.N, 4) | |
def ix(self): | |
return self.index_.view(-1) | |
def imap(self): | |
return self.imap_.view(1, self.mem * self.M, self.DIM) | |
def gmap(self): | |
return self.gmap_.view(1, self.mem * self.M, 128, 3, 3) | |
def get_pose(self, t): | |
if t in self.traj: | |
return SE3(self.traj[t]) | |
t0, dP = self.delta[t] | |
return dP * self.get_pose(t0) | |
def terminate(self): | |
"""interpolate missing poses""" | |
print("Terminating...") | |
self.traj = {} | |
for i in range(self.n): | |
current_t: int = self.tstamps_[i].item() | |
self.traj[current_t] = self.poses_[i] | |
poses = [self.get_pose(t) for t in range(self.counter)] | |
poses = lietorch.stack(poses, dim=0) | |
poses = poses.inv().data.cpu().numpy() | |
tstamps = np.array(self.tlist, dtype=np.float64) | |
print("Done!") | |
return poses, tstamps | |
def corr(self, coords, indicies=None): | |
"""local correlation volume""" | |
ii, jj = indicies if indicies is not None else (self.kk, self.jj) | |
ii1 = ii % (self.M * self.mem) | |
jj1 = jj % (self.mem) | |
corr1 = altcorr.corr(self.gmap, self.pyramid[0], coords / 1, ii1, jj1, 3) | |
corr2 = altcorr.corr(self.gmap, self.pyramid[1], coords / 4, ii1, jj1, 3) | |
return torch.stack([corr1, corr2], -1).view(1, len(ii), -1) | |
def reproject(self, indicies=None): | |
"""reproject patch k from i -> j""" | |
(ii, jj, kk) = indicies if indicies is not None else (self.ii, self.jj, self.kk) | |
coords = pops.transform( | |
SE3(self.poses), self.patches, self.intrinsics, ii, jj, kk | |
) | |
return coords.permute(0, 1, 4, 2, 3).contiguous() | |
def append_factors(self, ii, jj): | |
self.jj = torch.cat([self.jj, jj]) | |
self.kk = torch.cat([self.kk, ii]) | |
self.ii = torch.cat([self.ii, self.ix[ii]]) | |
net = torch.zeros(1, len(ii), self.DIM, **self.kwargs) | |
self.net = torch.cat([self.net, net], dim=1) | |
def remove_factors(self, m): | |
self.ii = self.ii[~m] | |
self.jj = self.jj[~m] | |
self.kk = self.kk[~m] | |
self.net = self.net[:, ~m] | |
def motion_probe(self): | |
"""kinda hacky way to ensure enough motion for initialization""" | |
kk = torch.arange(self.m - self.M, self.m, device="cuda") | |
jj = self.n * torch.ones_like(kk) | |
ii = self.ix[kk] | |
net = torch.zeros(1, len(ii), self.DIM, **self.kwargs) | |
coords = self.reproject(indicies=(ii, jj, kk)) | |
with autocast(enabled=self.cfg.MIXED_PRECISION): | |
corr = self.corr(coords, indicies=(kk, jj)) | |
ctx = self.imap[:, kk % (self.M * self.mem)] | |
net, (delta, weight, _) = self.network.update( | |
net, ctx, corr, None, ii, jj, kk | |
) | |
return torch.quantile(delta.norm(dim=-1).float(), 0.5) | |
def motionmag(self, i, j): | |
k = (self.ii == i) & (self.jj == j) | |
ii = self.ii[k] | |
jj = self.jj[k] | |
kk = self.kk[k] | |
flow = pops.flow_mag( | |
SE3(self.poses), self.patches, self.intrinsics, ii, jj, kk, beta=0.5 | |
) | |
return flow.mean().item() | |
def keyframe(self): | |
i = self.n - self.cfg.KEYFRAME_INDEX - 1 | |
j = self.n - self.cfg.KEYFRAME_INDEX + 1 | |
m = self.motionmag(i, j) + self.motionmag(j, i) | |
if m / 2 < self.cfg.KEYFRAME_THRESH: | |
k = self.n - self.cfg.KEYFRAME_INDEX | |
t0 = self.tstamps_[k - 1].item() | |
t1 = self.tstamps_[k].item() | |
dP = SE3(self.poses_[k]) * SE3(self.poses_[k - 1]).inv() | |
self.delta[t1] = (t0, dP) | |
to_remove = (self.ii == k) | (self.jj == k) | |
self.remove_factors(to_remove) | |
self.kk[self.ii > k] -= self.M | |
self.ii[self.ii > k] -= 1 | |
self.jj[self.jj > k] -= 1 | |
for i in range(k, self.n - 1): | |
self.tstamps_[i] = self.tstamps_[i + 1] | |
self.colors_[i] = self.colors_[i + 1] | |
self.poses_[i] = self.poses_[i + 1] | |
self.patches_[i] = self.patches_[i + 1] | |
self.intrinsics_[i] = self.intrinsics_[i + 1] | |
self.imap_[i % self.mem] = self.imap_[(i + 1) % self.mem] | |
self.gmap_[i % self.mem] = self.gmap_[(i + 1) % self.mem] | |
self.fmap1_[0, i % self.mem] = self.fmap1_[0, (i + 1) % self.mem] | |
self.fmap2_[0, i % self.mem] = self.fmap2_[0, (i + 1) % self.mem] | |
self.n -= 1 | |
self.m -= self.M | |
to_remove = self.ix[self.kk] < self.n - self.cfg.REMOVAL_WINDOW | |
self.remove_factors(to_remove) | |
def update(self): | |
with Timer("other", enabled=self.enable_timing): | |
coords = self.reproject() | |
with autocast(enabled=True): | |
corr = self.corr(coords) | |
ctx = self.imap[:, self.kk % (self.M * self.mem)] | |
self.net, (delta, weight, _) = self.network.update( | |
self.net, ctx, corr, None, self.ii, self.jj, self.kk | |
) | |
lmbda = torch.as_tensor([1e-4], device="cuda") | |
weight = weight.float() | |
target = coords[..., self.P // 2, self.P // 2] + delta.float() | |
with Timer("BA", enabled=self.enable_timing): | |
t0 = self.n - self.cfg.OPTIMIZATION_WINDOW if self.is_initialized else 1 | |
t0 = max(t0, 1) | |
try: | |
fastba.BA( | |
self.poses, | |
self.patches, | |
self.intrinsics, | |
target, | |
weight, | |
lmbda, | |
self.ii, | |
self.jj, | |
self.kk, | |
t0, | |
self.n, | |
2, | |
) | |
except: | |
print("Warning BA failed...") | |
points = pops.point_cloud( | |
SE3(self.poses), | |
self.patches[:, : self.m], | |
self.intrinsics, | |
self.ix[: self.m], | |
) | |
points = (points[..., 1, 1, :3] / points[..., 1, 1, 3:]).reshape(-1, 3) | |
self.points_[: len(points)] = points[:] | |
def __edges_all(self): | |
return flatmeshgrid( | |
torch.arange(0, self.m, device="cuda"), | |
torch.arange(0, self.n, device="cuda"), | |
indexing="ij", | |
) | |
def __edges_forw(self): | |
r = self.cfg.PATCH_LIFETIME | |
t0 = self.M * max((self.n - r), 0) | |
t1 = self.M * max((self.n - 1), 0) | |
return flatmeshgrid( | |
torch.arange(t0, t1, device="cuda"), | |
torch.arange(self.n - 1, self.n, device="cuda"), | |
indexing="ij", | |
) | |
def __edges_back(self): | |
r = self.cfg.PATCH_LIFETIME | |
t0 = self.M * max((self.n - 1), 0) | |
t1 = self.M * max((self.n - 0), 0) | |
return flatmeshgrid( | |
torch.arange(t0, t1, device="cuda"), | |
torch.arange(max(self.n - r, 0), self.n, device="cuda"), | |
indexing="ij", | |
) | |
def __call__(self, tstamp: int, image, intrinsics) -> None: | |
"""track new frame""" | |
if (self.n + 1) >= self.N: | |
raise Exception( | |
f'The buffer size is too small. You can increase it using "--buffer {self.N*2}"' | |
) | |
image = 2 * (image[None, None] / 255.0) - 0.5 | |
with autocast(enabled=self.cfg.MIXED_PRECISION): | |
fmap, gmap, imap, patches, _, clr = self.network.patchify( | |
image, | |
patches_per_image=self.cfg.PATCHES_PER_FRAME, | |
gradient_bias=self.cfg.GRADIENT_BIAS, | |
return_color=True, | |
) | |
### update state attributes ### | |
self.tlist.append(tstamp) | |
self.tstamps_[self.n] = self.counter | |
self.intrinsics_[self.n] = intrinsics / self.RES | |
# color info for visualization | |
clr = (clr[0, :, [2, 1, 0]] + 0.5) * (255.0 / 2) | |
self.colors_[self.n] = clr.to(torch.uint8) | |
self.index_[self.n + 1] = self.n + 1 | |
self.index_map_[self.n + 1] = self.m + self.M | |
if self.n > 1: | |
if self.cfg.MOTION_MODEL == "DAMPED_LINEAR": | |
P1 = SE3(self.poses_[self.n - 1]) | |
P2 = SE3(self.poses_[self.n - 2]) | |
xi = self.cfg.MOTION_DAMPING * (P1 * P2.inv()).log() | |
tvec_qvec = (SE3.exp(xi) * P1).data | |
self.poses_[self.n] = tvec_qvec | |
else: | |
tvec_qvec = self.poses[self.n - 1] | |
self.poses_[self.n] = tvec_qvec | |
# TODO better depth initialization | |
patches[:, :, 2] = torch.rand_like(patches[:, :, 2, 0, 0, None, None]) | |
if self.is_initialized: | |
s = torch.median(self.patches_[self.n - 3 : self.n, :, 2]) | |
patches[:, :, 2] = s | |
self.patches_[self.n] = patches | |
### update network attributes ### | |
self.imap_[self.n % self.mem] = imap.squeeze() | |
self.gmap_[self.n % self.mem] = gmap.squeeze() | |
self.fmap1_[:, self.n % self.mem] = F.avg_pool2d(fmap[0], 1, 1) | |
self.fmap2_[:, self.n % self.mem] = F.avg_pool2d(fmap[0], 4, 4) | |
self.counter += 1 | |
if self.n > 0 and not self.is_initialized: | |
if self.motion_probe() < 2.0: | |
self.delta[self.counter - 1] = (self.counter - 2, Id[0]) | |
return | |
self.n += 1 | |
self.m += self.M | |
# relative pose | |
self.append_factors(*self.__edges_forw()) | |
self.append_factors(*self.__edges_back()) | |
if self.n == 8 and not self.is_initialized: | |
self.is_initialized = True | |
for itr in range(12): | |
self.update() | |
elif self.is_initialized: | |
self.update() | |
self.keyframe() | |