MiniDPVO / tools /app.py
pablovela5620's picture
initial commit with working dpvo
899c526
raw
history blame
4.78 kB
import gradio as gr
# import spaces
from gradio_rerun import Rerun
import rerun as rr
import rerun.blueprint as rrb
from pathlib import Path
import uuid
import mmcv
import spaces
from mini_dpvo.api.inference import run
from mini_dpvo.config import cfg as base_cfg
base_cfg.merge_from_file("config/fast.yaml")
base_cfg.BUFFER_SIZE = 2048
def create_blueprint(image_name_list: list[str], log_path: Path) -> rrb.Blueprint:
# dont show 2d views if there are more than 4 images as to not clutter the view
if len(image_name_list) > 4:
blueprint = rrb.Blueprint(
rrb.Horizontal(
rrb.Spatial3DView(origin=f"{log_path}"),
),
collapse_panels=True,
)
else:
blueprint = rrb.Blueprint(
rrb.Horizontal(
contents=[
rrb.Spatial3DView(origin=f"{log_path}"),
rrb.Vertical(
contents=[
rrb.Spatial2DView(
origin=f"{log_path}/camera_{i}/pinhole/",
contents=[
"+ $origin/**",
],
)
for i in range(len(image_name_list))
]
),
],
column_shares=[3, 1],
),
collapse_panels=True,
)
return blueprint
@spaces.GPU
def predict(video_file_path: str, stride: int) -> tuple[str, str]:
# check if is list or string and if not raise error
if not isinstance(video_file_path, str):
raise gr.Error(
f"Something is wrong with your input video, got: {type(video_file_path)}"
)
uuid_str = str(uuid.uuid4())
filename = Path(f"/tmp/gradio/{uuid_str}.rrd")
if not filename.parent.exists():
filename.parent.mkdir(parents=True)
rr.init(f"{uuid_str}")
calib_path = "data/calib/iphone.txt"
if not Path(calib_path).exists():
gr.Error(f"Calibration file not found at {calib_path}")
dpvo_pred, time_taken = run(
cfg=base_cfg,
network_path="checkpoints/dpvo.pth",
imagedir=video_file_path,
calib="data/calib/iphone.txt",
stride=stride,
skip=0,
vis_during=True,
)
# blueprint: rrb.Blueprint = create_blueprint(image_name_list, log_path)
# rr.send_blueprint(blueprint)
rr.set_time_sequence("sequence", 0)
# log_optimized_result(optimized_results, log_path)
rr.save(filename.as_posix())
return filename.as_posix(), f"Total time: {time_taken:.2f}s"
def on_file_upload(video_file_path: str) -> None:
video_reader = mmcv.VideoReader(video_file_path)
video_info = f"""
**Video Info:**
- Number of Frames: {video_reader.frame_cnt}
- FPS: {round(video_reader.fps)}
"""
return video_info
with gr.Blocks(
css=""".gradio-container {margin: 0 !important; min-width: 100%};""",
title="Mini-DPVO Demo",
) as demo:
# scene state is save so that you can change conf_thr, cam_size... without rerunning the inference
gr.HTML('<h2 style="text-align: center;">Mini-DPVO Demo</h2>')
gr.HTML(
'<p style="text-align: center;">Unofficial DPVO demo using the mini-dpvo pip package</p>'
)
gr.HTML(
'<p style="text-align: center;">Learn more about mini-dpvo here <a href="https://github.com/pablovela5620/mini-dpvo">here</a></p>'
)
with gr.Tab(label="Video Input"):
with gr.Column():
with gr.Row():
video_input = gr.File(
height=300,
file_count="single",
file_types=[".mp4", ".mov"],
label="Video",
)
with gr.Column():
video_info = gr.Markdown(
value="""
**Video Info:**
"""
)
time_taken = gr.Textbox(label="Time Taken")
with gr.Accordion(label="Advanced", open=False):
stride = gr.Slider(
label="Stride",
minimum=1,
maximum=5,
step=1,
value=2,
)
run_btn_single = gr.Button("Run")
rerun_viewer_single = Rerun(height=900)
run_btn_single.click(
fn=predict,
inputs=[video_input, stride],
outputs=[rerun_viewer_single, time_taken],
)
video_input.upload(
fn=on_file_upload, inputs=[video_input], outputs=[video_info]
)
demo.launch(share=False)