Spaces:
Runtime error
Runtime error
import gradio as gr | |
# import spaces | |
from gradio_rerun import Rerun | |
import rerun as rr | |
import rerun.blueprint as rrb | |
from pathlib import Path | |
import uuid | |
import mmcv | |
import spaces | |
from mini_dpvo.api.inference import run | |
from mini_dpvo.config import cfg as base_cfg | |
base_cfg.merge_from_file("config/fast.yaml") | |
base_cfg.BUFFER_SIZE = 2048 | |
def create_blueprint(image_name_list: list[str], log_path: Path) -> rrb.Blueprint: | |
# dont show 2d views if there are more than 4 images as to not clutter the view | |
if len(image_name_list) > 4: | |
blueprint = rrb.Blueprint( | |
rrb.Horizontal( | |
rrb.Spatial3DView(origin=f"{log_path}"), | |
), | |
collapse_panels=True, | |
) | |
else: | |
blueprint = rrb.Blueprint( | |
rrb.Horizontal( | |
contents=[ | |
rrb.Spatial3DView(origin=f"{log_path}"), | |
rrb.Vertical( | |
contents=[ | |
rrb.Spatial2DView( | |
origin=f"{log_path}/camera_{i}/pinhole/", | |
contents=[ | |
"+ $origin/**", | |
], | |
) | |
for i in range(len(image_name_list)) | |
] | |
), | |
], | |
column_shares=[3, 1], | |
), | |
collapse_panels=True, | |
) | |
return blueprint | |
def predict(video_file_path: str, stride: int) -> tuple[str, str]: | |
# check if is list or string and if not raise error | |
if not isinstance(video_file_path, str): | |
raise gr.Error( | |
f"Something is wrong with your input video, got: {type(video_file_path)}" | |
) | |
uuid_str = str(uuid.uuid4()) | |
filename = Path(f"/tmp/gradio/{uuid_str}.rrd") | |
if not filename.parent.exists(): | |
filename.parent.mkdir(parents=True) | |
rr.init(f"{uuid_str}") | |
calib_path = "data/calib/iphone.txt" | |
if not Path(calib_path).exists(): | |
gr.Error(f"Calibration file not found at {calib_path}") | |
dpvo_pred, time_taken = run( | |
cfg=base_cfg, | |
network_path="checkpoints/dpvo.pth", | |
imagedir=video_file_path, | |
calib="data/calib/iphone.txt", | |
stride=stride, | |
skip=0, | |
vis_during=True, | |
) | |
# blueprint: rrb.Blueprint = create_blueprint(image_name_list, log_path) | |
# rr.send_blueprint(blueprint) | |
rr.set_time_sequence("sequence", 0) | |
# log_optimized_result(optimized_results, log_path) | |
rr.save(filename.as_posix()) | |
return filename.as_posix(), f"Total time: {time_taken:.2f}s" | |
def on_file_upload(video_file_path: str) -> None: | |
video_reader = mmcv.VideoReader(video_file_path) | |
video_info = f""" | |
**Video Info:** | |
- Number of Frames: {video_reader.frame_cnt} | |
- FPS: {round(video_reader.fps)} | |
""" | |
return video_info | |
with gr.Blocks( | |
css=""".gradio-container {margin: 0 !important; min-width: 100%};""", | |
title="Mini-DPVO Demo", | |
) as demo: | |
# scene state is save so that you can change conf_thr, cam_size... without rerunning the inference | |
gr.HTML('<h2 style="text-align: center;">Mini-DPVO Demo</h2>') | |
gr.HTML( | |
'<p style="text-align: center;">Unofficial DPVO demo using the mini-dpvo pip package</p>' | |
) | |
gr.HTML( | |
'<p style="text-align: center;">Learn more about mini-dpvo here <a href="https://github.com/pablovela5620/mini-dpvo">here</a></p>' | |
) | |
with gr.Tab(label="Video Input"): | |
with gr.Column(): | |
with gr.Row(): | |
video_input = gr.File( | |
height=300, | |
file_count="single", | |
file_types=[".mp4", ".mov"], | |
label="Video", | |
) | |
with gr.Column(): | |
video_info = gr.Markdown( | |
value=""" | |
**Video Info:** | |
""" | |
) | |
time_taken = gr.Textbox(label="Time Taken") | |
with gr.Accordion(label="Advanced", open=False): | |
stride = gr.Slider( | |
label="Stride", | |
minimum=1, | |
maximum=5, | |
step=1, | |
value=2, | |
) | |
run_btn_single = gr.Button("Run") | |
rerun_viewer_single = Rerun(height=900) | |
run_btn_single.click( | |
fn=predict, | |
inputs=[video_input, stride], | |
outputs=[rerun_viewer_single, time_taken], | |
) | |
video_input.upload( | |
fn=on_file_upload, inputs=[video_input], outputs=[video_info] | |
) | |
demo.launch(share=False) | |