pablovela5620's picture
initial commit with working dpvo
899c526
import numpy as np
import torch
import torch.utils.data as data
import torch.nn.functional as F
import csv
import os
import cv2
import math
import random
import json
import pickle
import os.path as osp
from .augmentation import RGBDAugmentor
from .rgbd_utils import *
class RGBDDataset(data.Dataset):
def __init__(self, name, datapath, n_frames=4, crop_size=[480,640], fmin=10.0, fmax=75.0, aug=True, sample=True):
""" Base class for RGBD dataset """
self.aug = None
self.root = datapath
self.name = name
self.aug = aug
self.sample = sample
self.n_frames = n_frames
self.fmin = fmin # exclude very easy examples
self.fmax = fmax # exclude very hard examples
if self.aug:
self.aug = RGBDAugmentor(crop_size=crop_size)
# building dataset is expensive, cache so only needs to be performed once
cur_path = osp.dirname(osp.abspath(__file__))
if not os.path.isdir(osp.join(cur_path, 'cache')):
os.mkdir(osp.join(cur_path, 'cache'))
self.scene_info = \
pickle.load(open('datasets/TartanAir.pickle', 'rb'))[0]
self._build_dataset_index()
def _build_dataset_index(self):
self.dataset_index = []
for scene in self.scene_info:
if not self.__class__.is_test_scene(scene):
graph = self.scene_info[scene]['graph']
for i in graph:
if i < len(graph) - 65:
self.dataset_index.append((scene, i))
else:
print("Reserving {} for validation".format(scene))
@staticmethod
def image_read(image_file):
return cv2.imread(image_file)
@staticmethod
def depth_read(depth_file):
return np.load(depth_file)
def build_frame_graph(self, poses, depths, intrinsics, f=16, max_flow=256):
""" compute optical flow distance between all pairs of frames """
def read_disp(fn):
depth = self.__class__.depth_read(fn)[f//2::f, f//2::f]
depth[depth < 0.01] = np.mean(depth)
return 1.0 / depth
poses = np.array(poses)
intrinsics = np.array(intrinsics) / f
disps = np.stack(list(map(read_disp, depths)), 0)
d = f * compute_distance_matrix_flow(poses, disps, intrinsics)
graph = {}
for i in range(d.shape[0]):
j, = np.where(d[i] < max_flow)
graph[i] = (j, d[i,j])
return graph
def __getitem__(self, index):
""" return training video """
index = index % len(self.dataset_index)
scene_id, ix = self.dataset_index[index]
frame_graph = self.scene_info[scene_id]['graph']
images_list = self.scene_info[scene_id]['images']
depths_list = self.scene_info[scene_id]['depths']
poses_list = self.scene_info[scene_id]['poses']
intrinsics_list = self.scene_info[scene_id]['intrinsics']
# stride = np.random.choice([1,2,3])
d = np.random.uniform(self.fmin, self.fmax)
s = 1
inds = [ ix ]
while len(inds) < self.n_frames:
# get other frames within flow threshold
if self.sample:
k = (frame_graph[ix][1] > self.fmin) & (frame_graph[ix][1] < self.fmax)
frames = frame_graph[ix][0][k]
# prefer frames forward in time
if np.count_nonzero(frames[frames > ix]):
ix = np.random.choice(frames[frames > ix])
elif ix + 1 < len(images_list):
ix = ix + 1
elif np.count_nonzero(frames):
ix = np.random.choice(frames)
else:
i = frame_graph[ix][0].copy()
g = frame_graph[ix][1].copy()
g[g > d] = -1
if s > 0:
g[i <= ix] = -1
else:
g[i >= ix] = -1
if len(g) > 0 and np.max(g) > 0:
ix = i[np.argmax(g)]
else:
if ix + s >= len(images_list) or ix + s < 0:
s *= -1
ix = ix + s
inds += [ ix ]
images, depths, poses, intrinsics = [], [], [], []
for i in inds:
images.append(self.__class__.image_read(images_list[i]))
depths.append(self.__class__.depth_read(depths_list[i]))
poses.append(poses_list[i])
intrinsics.append(intrinsics_list[i])
images = np.stack(images).astype(np.float32)
depths = np.stack(depths).astype(np.float32)
poses = np.stack(poses).astype(np.float32)
intrinsics = np.stack(intrinsics).astype(np.float32)
images = torch.from_numpy(images).float()
images = images.permute(0, 3, 1, 2)
disps = torch.from_numpy(1.0 / depths)
poses = torch.from_numpy(poses)
intrinsics = torch.from_numpy(intrinsics)
if self.aug:
images, poses, disps, intrinsics = \
self.aug(images, poses, disps, intrinsics)
# normalize depth
s = .7 * torch.quantile(disps, .98)
disps = disps / s
poses[...,:3] *= s
return images, poses, disps, intrinsics
def __len__(self):
return len(self.dataset_index)
def __imul__(self, x):
self.dataset_index *= x
return self