Spaces:
Runtime error
Runtime error
template <typename Scalar> | |
class RxSO3 { | |
public: | |
const static int constexpr K = 4; // manifold dimension | |
const static int constexpr N = 5; // embedding dimension | |
using Vector3 = Eigen::Matrix<Scalar,3,1>; | |
using Vector4 = Eigen::Matrix<Scalar,4,1>; | |
using Matrix3 = Eigen::Matrix<Scalar,3,3>; | |
using Tangent = Eigen::Matrix<Scalar,K,1>; | |
using Data = Eigen::Matrix<Scalar,N,1>; | |
using Point = Eigen::Matrix<Scalar,3,1>; | |
using Point4 = Eigen::Matrix<Scalar,4,1>; | |
using Quaternion = Eigen::Quaternion<Scalar>; | |
using Transformation = Eigen::Matrix<Scalar,3,3>; | |
using Adjoint = Eigen::Matrix<Scalar,4,4>; | |
EIGEN_DEVICE_FUNC RxSO3(Quaternion const& q, Scalar const s) | |
: unit_quaternion(q), scale(s) { | |
unit_quaternion.normalize(); | |
}; | |
EIGEN_DEVICE_FUNC RxSO3(const Scalar *data) : unit_quaternion(data), scale(data[4]) { | |
unit_quaternion.normalize(); | |
}; | |
EIGEN_DEVICE_FUNC RxSO3() { | |
unit_quaternion = Quaternion::Identity(); | |
scale = Scalar(1.0); | |
} | |
EIGEN_DEVICE_FUNC RxSO3<Scalar> inv() { | |
return RxSO3<Scalar>(unit_quaternion.conjugate(), 1.0/scale); | |
} | |
EIGEN_DEVICE_FUNC Data data() const { | |
Data data_vec; data_vec << unit_quaternion.coeffs(), scale; | |
return data_vec; | |
} | |
EIGEN_DEVICE_FUNC RxSO3<Scalar> operator*(RxSO3<Scalar> const& other) { | |
return RxSO3<Scalar>(unit_quaternion * other.unit_quaternion, scale * other.scale); | |
} | |
EIGEN_DEVICE_FUNC Point operator*(Point const& p) const { | |
const Quaternion& q = unit_quaternion; | |
Point uv = q.vec().cross(p); uv += uv; | |
return scale * (p + q.w()*uv + q.vec().cross(uv)); | |
} | |
EIGEN_DEVICE_FUNC Point4 act4(Point4 const& p) const { | |
Point4 p1; p1 << this->operator*(p.template segment<3>(0)), p(3); | |
return p1; | |
} | |
EIGEN_DEVICE_FUNC Adjoint Adj() const { | |
Adjoint Ad = Adjoint::Identity(); | |
Ad.template block<3,3>(0,0) = unit_quaternion.toRotationMatrix(); | |
return Ad; | |
} | |
EIGEN_DEVICE_FUNC Transformation Matrix() const { | |
return scale * unit_quaternion.toRotationMatrix(); | |
} | |
EIGEN_DEVICE_FUNC Eigen::Matrix<Scalar,4,4> Matrix4x4() const { | |
Eigen::Matrix<Scalar,4,4> T; | |
T = Eigen::Matrix<Scalar,4,4>::Identity(); | |
T.template block<3,3>(0,0) = Matrix(); | |
return T; | |
} | |
EIGEN_DEVICE_FUNC Eigen::Matrix<Scalar,5,5> orthogonal_projector() const { | |
// jacobian action on a point | |
Eigen::Matrix<Scalar,5,5> J = Eigen::Matrix<Scalar,5,5>::Zero(); | |
J.template block<3,3>(0,0) = 0.5 * ( | |
unit_quaternion.w() * Matrix3::Identity() + | |
SO3<Scalar>::hat(-unit_quaternion.vec()) | |
); | |
J.template block<1,3>(3,0) = 0.5 * (-unit_quaternion.vec()); | |
// scale | |
J(4,3) = scale; | |
return J; | |
} | |
EIGEN_DEVICE_FUNC Transformation Rotation() const { | |
return unit_quaternion.toRotationMatrix(); | |
} | |
EIGEN_DEVICE_FUNC Tangent Adj(Tangent const& a) const { | |
return Adj() * a; | |
} | |
EIGEN_DEVICE_FUNC Tangent AdjT(Tangent const& a) const { | |
return Adj().transpose() * a; | |
} | |
EIGEN_DEVICE_FUNC static Transformation hat(Tangent const& phi_sigma) { | |
Vector3 const phi = phi_sigma.template segment<3>(0); | |
return SO3<Scalar>::hat(phi) + phi(3) * Transformation::Identity(); | |
} | |
EIGEN_DEVICE_FUNC static Adjoint adj(Tangent const& phi_sigma) { | |
Vector3 const phi = phi_sigma.template segment<3>(0); | |
Matrix3 const Phi = SO3<Scalar>::hat(phi); | |
Adjoint ad = Adjoint::Zero(); | |
ad.template block<3,3>(0,0) = Phi; | |
return ad; | |
} | |
EIGEN_DEVICE_FUNC Tangent Log() const { | |
using std::abs; | |
using std::atan; | |
using std::sqrt; | |
Scalar squared_n = unit_quaternion.vec().squaredNorm(); | |
Scalar w = unit_quaternion.w(); | |
Scalar two_atan_nbyw_by_n; | |
/// Atan-based log thanks to | |
/// | |
/// C. Hertzberg et al.: | |
/// "Integrating Generic Sensor Fusion Algorithms with Sound State | |
/// Representation through Encapsulation of Manifolds" | |
/// Information Fusion, 2011 | |
if (squared_n < EPS * EPS) { | |
two_atan_nbyw_by_n = Scalar(2) / w - Scalar(2.0/3.0) * (squared_n) / (w * w * w); | |
} else { | |
Scalar n = sqrt(squared_n); | |
if (abs(w) < EPS) { | |
if (w > Scalar(0)) { | |
two_atan_nbyw_by_n = PI / n; | |
} else { | |
two_atan_nbyw_by_n = -PI / n; | |
} | |
} else { | |
two_atan_nbyw_by_n = Scalar(2) * atan(n / w) / n; | |
} | |
} | |
Tangent phi_sigma; | |
phi_sigma << two_atan_nbyw_by_n * unit_quaternion.vec(), log(scale); | |
return phi_sigma; | |
} | |
EIGEN_DEVICE_FUNC static RxSO3<Scalar> Exp(Tangent const& phi_sigma) { | |
Vector3 phi = phi_sigma.template segment<3>(0); | |
Scalar scale = exp(phi_sigma(3)); | |
Scalar theta2 = phi.squaredNorm(); | |
Scalar theta = sqrt(theta2); | |
Scalar imag_factor; | |
Scalar real_factor; | |
if (theta < EPS) { | |
Scalar theta4 = theta2 * theta2; | |
imag_factor = Scalar(0.5) - Scalar(1.0/48.0) * theta2 + Scalar(1.0/3840.0) * theta4; | |
real_factor = Scalar(1) - Scalar(1.0/8.0) * theta2 + Scalar(1.0/384.0) * theta4; | |
} else { | |
imag_factor = sin(.5 * theta) / theta; | |
real_factor = cos(.5 * theta); | |
} | |
Quaternion q(real_factor, imag_factor*phi.x(), imag_factor*phi.y(), imag_factor*phi.z()); | |
return RxSO3<Scalar>(q, scale); | |
} | |
EIGEN_DEVICE_FUNC static Matrix3 calcW(Tangent const& phi_sigma) { | |
// left jacobian | |
using std::abs; | |
Matrix3 const I = Matrix3::Identity(); | |
Scalar const one(1); | |
Scalar const half(0.5); | |
Vector3 const phi = phi_sigma.template segment<3>(0); | |
Scalar const sigma = phi_sigma(3); | |
Scalar const theta = phi.norm(); | |
Matrix3 const Phi = SO3<Scalar>::hat(phi); | |
Matrix3 const Phi2 = Phi * Phi; | |
Scalar const scale = exp(sigma); | |
Scalar A, B, C; | |
if (abs(sigma) < EPS) { | |
C = one; | |
if (abs(theta) < EPS) { | |
A = half; | |
B = Scalar(1. / 6.); | |
} else { | |
Scalar theta_sq = theta * theta; | |
A = (one - cos(theta)) / theta_sq; | |
B = (theta - sin(theta)) / (theta_sq * theta); | |
} | |
} else { | |
C = (scale - one) / sigma; | |
if (abs(theta) < EPS) { | |
Scalar sigma_sq = sigma * sigma; | |
A = ((sigma - one) * scale + one) / sigma_sq; | |
B = (scale * half * sigma_sq + scale - one - sigma * scale) / | |
(sigma_sq * sigma); | |
} else { | |
Scalar theta_sq = theta * theta; | |
Scalar a = scale * sin(theta); | |
Scalar b = scale * cos(theta); | |
Scalar c = theta_sq + sigma * sigma; | |
A = (a * sigma + (one - b) * theta) / (theta * c); | |
B = (C - ((b - one) * sigma + a * theta) / (c)) * one / (theta_sq); | |
} | |
} | |
return A * Phi + B * Phi2 + C * I; | |
} | |
EIGEN_DEVICE_FUNC static Matrix3 calcWInv(Tangent const& phi_sigma) { | |
// left jacobian inverse | |
Matrix3 const I = Matrix3::Identity(); | |
Scalar const half(0.5); | |
Scalar const one(1); | |
Scalar const two(2); | |
Vector3 const phi = phi_sigma.template segment<3>(0); | |
Scalar const sigma = phi_sigma(3); | |
Scalar const theta = phi.norm(); | |
Scalar const scale = exp(sigma); | |
Matrix3 const Phi = SO3<Scalar>::hat(phi); | |
Matrix3 const Phi2 = Phi * Phi; | |
Scalar const scale_sq = scale * scale; | |
Scalar const theta_sq = theta * theta; | |
Scalar const sin_theta = sin(theta); | |
Scalar const cos_theta = cos(theta); | |
Scalar a, b, c; | |
if (abs(sigma * sigma) < EPS) { | |
c = one - half * sigma; | |
a = -half; | |
if (abs(theta_sq) < EPS) { | |
b = Scalar(1. / 12.); | |
} else { | |
b = (theta * sin_theta + two * cos_theta - two) / | |
(two * theta_sq * (cos_theta - one)); | |
} | |
} else { | |
Scalar const scale_cu = scale_sq * scale; | |
c = sigma / (scale - one); | |
if (abs(theta_sq) < EPS) { | |
a = (-sigma * scale + scale - one) / ((scale - one) * (scale - one)); | |
b = (scale_sq * sigma - two * scale_sq + scale * sigma + two * scale) / | |
(two * scale_cu - Scalar(6) * scale_sq + Scalar(6) * scale - two); | |
} else { | |
Scalar const s_sin_theta = scale * sin_theta; | |
Scalar const s_cos_theta = scale * cos_theta; | |
a = (theta * s_cos_theta - theta - sigma * s_sin_theta) / | |
(theta * (scale_sq - two * s_cos_theta + one)); | |
b = -scale * | |
(theta * s_sin_theta - theta * sin_theta + sigma * s_cos_theta - | |
scale * sigma + sigma * cos_theta - sigma) / | |
(theta_sq * (scale_cu - two * scale * s_cos_theta - scale_sq + | |
two * s_cos_theta + scale - one)); | |
} | |
} | |
return a * Phi + b * Phi2 + c * I; | |
} | |
EIGEN_DEVICE_FUNC static Adjoint left_jacobian(Tangent const& phi_sigma) { | |
// left jacobian | |
Adjoint J = Adjoint::Identity(); | |
Vector3 phi = phi_sigma.template segment<3>(0); | |
J.template block<3,3>(0,0) = SO3<Scalar>::left_jacobian(phi); | |
return J; | |
} | |
EIGEN_DEVICE_FUNC static Adjoint left_jacobian_inverse(Tangent const& phi_sigma) { | |
// left jacobian inverse | |
Adjoint Jinv = Adjoint::Identity(); | |
Vector3 phi = phi_sigma.template segment<3>(0); | |
Jinv.template block<3,3>(0,0) = SO3<Scalar>::left_jacobian_inverse(phi); | |
return Jinv; | |
} | |
EIGEN_DEVICE_FUNC static Eigen::Matrix<Scalar,3,4> act_jacobian(Point const& p) { | |
// jacobian action on a point | |
Eigen::Matrix<Scalar,3,4> Ja; | |
Ja << SO3<Scalar>::hat(-p), p; | |
return Ja; | |
} | |
EIGEN_DEVICE_FUNC static Eigen::Matrix<Scalar,4,4> act4_jacobian(Point4 const& p) { | |
// jacobian action on a point | |
Eigen::Matrix<Scalar,4,4> J = Eigen::Matrix<Scalar,4,4>::Zero(); | |
J.template block<3,3>(0,0) = SO3<Scalar>::hat(-p.template segment<3>(0)); | |
J.template block<3,1>(0,3) = p.template segment<3>(0); | |
return J; | |
} | |
private: | |
Quaternion unit_quaternion; | |
Scalar scale; | |
}; | |