pablovela5620's picture
initial commit with working dpvo
899c526
#ifndef RxSO3_HEADER
#define RxSO3_HEADER
#include <stdio.h>
#include <Eigen/Dense>
#include <Eigen/Geometry>
#include "common.h"
template <typename Scalar>
class RxSO3 {
public:
const static int constexpr K = 4; // manifold dimension
const static int constexpr N = 5; // embedding dimension
using Vector3 = Eigen::Matrix<Scalar,3,1>;
using Vector4 = Eigen::Matrix<Scalar,4,1>;
using Matrix3 = Eigen::Matrix<Scalar,3,3>;
using Tangent = Eigen::Matrix<Scalar,K,1>;
using Data = Eigen::Matrix<Scalar,N,1>;
using Point = Eigen::Matrix<Scalar,3,1>;
using Point4 = Eigen::Matrix<Scalar,4,1>;
using Quaternion = Eigen::Quaternion<Scalar>;
using Transformation = Eigen::Matrix<Scalar,3,3>;
using Adjoint = Eigen::Matrix<Scalar,4,4>;
EIGEN_DEVICE_FUNC RxSO3(Quaternion const& q, Scalar const s)
: unit_quaternion(q), scale(s) {
unit_quaternion.normalize();
};
EIGEN_DEVICE_FUNC RxSO3(const Scalar *data) : unit_quaternion(data), scale(data[4]) {
unit_quaternion.normalize();
};
EIGEN_DEVICE_FUNC RxSO3() {
unit_quaternion = Quaternion::Identity();
scale = Scalar(1.0);
}
EIGEN_DEVICE_FUNC RxSO3<Scalar> inv() {
return RxSO3<Scalar>(unit_quaternion.conjugate(), 1.0/scale);
}
EIGEN_DEVICE_FUNC Data data() const {
Data data_vec; data_vec << unit_quaternion.coeffs(), scale;
return data_vec;
}
EIGEN_DEVICE_FUNC RxSO3<Scalar> operator*(RxSO3<Scalar> const& other) {
return RxSO3<Scalar>(unit_quaternion * other.unit_quaternion, scale * other.scale);
}
EIGEN_DEVICE_FUNC Point operator*(Point const& p) const {
const Quaternion& q = unit_quaternion;
Point uv = q.vec().cross(p); uv += uv;
return scale * (p + q.w()*uv + q.vec().cross(uv));
}
EIGEN_DEVICE_FUNC Point4 act4(Point4 const& p) const {
Point4 p1; p1 << this->operator*(p.template segment<3>(0)), p(3);
return p1;
}
EIGEN_DEVICE_FUNC Adjoint Adj() const {
Adjoint Ad = Adjoint::Identity();
Ad.template block<3,3>(0,0) = unit_quaternion.toRotationMatrix();
return Ad;
}
EIGEN_DEVICE_FUNC Transformation Matrix() const {
return scale * unit_quaternion.toRotationMatrix();
}
EIGEN_DEVICE_FUNC Eigen::Matrix<Scalar,4,4> Matrix4x4() const {
Eigen::Matrix<Scalar,4,4> T;
T = Eigen::Matrix<Scalar,4,4>::Identity();
T.template block<3,3>(0,0) = Matrix();
return T;
}
EIGEN_DEVICE_FUNC Eigen::Matrix<Scalar,5,5> orthogonal_projector() const {
// jacobian action on a point
Eigen::Matrix<Scalar,5,5> J = Eigen::Matrix<Scalar,5,5>::Zero();
J.template block<3,3>(0,0) = 0.5 * (
unit_quaternion.w() * Matrix3::Identity() +
SO3<Scalar>::hat(-unit_quaternion.vec())
);
J.template block<1,3>(3,0) = 0.5 * (-unit_quaternion.vec());
// scale
J(4,3) = scale;
return J;
}
EIGEN_DEVICE_FUNC Transformation Rotation() const {
return unit_quaternion.toRotationMatrix();
}
EIGEN_DEVICE_FUNC Tangent Adj(Tangent const& a) const {
return Adj() * a;
}
EIGEN_DEVICE_FUNC Tangent AdjT(Tangent const& a) const {
return Adj().transpose() * a;
}
EIGEN_DEVICE_FUNC static Transformation hat(Tangent const& phi_sigma) {
Vector3 const phi = phi_sigma.template segment<3>(0);
return SO3<Scalar>::hat(phi) + phi(3) * Transformation::Identity();
}
EIGEN_DEVICE_FUNC static Adjoint adj(Tangent const& phi_sigma) {
Vector3 const phi = phi_sigma.template segment<3>(0);
Matrix3 const Phi = SO3<Scalar>::hat(phi);
Adjoint ad = Adjoint::Zero();
ad.template block<3,3>(0,0) = Phi;
return ad;
}
EIGEN_DEVICE_FUNC Tangent Log() const {
using std::abs;
using std::atan;
using std::sqrt;
Scalar squared_n = unit_quaternion.vec().squaredNorm();
Scalar w = unit_quaternion.w();
Scalar two_atan_nbyw_by_n;
/// Atan-based log thanks to
///
/// C. Hertzberg et al.:
/// "Integrating Generic Sensor Fusion Algorithms with Sound State
/// Representation through Encapsulation of Manifolds"
/// Information Fusion, 2011
if (squared_n < EPS * EPS) {
two_atan_nbyw_by_n = Scalar(2) / w - Scalar(2.0/3.0) * (squared_n) / (w * w * w);
} else {
Scalar n = sqrt(squared_n);
if (abs(w) < EPS) {
if (w > Scalar(0)) {
two_atan_nbyw_by_n = PI / n;
} else {
two_atan_nbyw_by_n = -PI / n;
}
} else {
two_atan_nbyw_by_n = Scalar(2) * atan(n / w) / n;
}
}
Tangent phi_sigma;
phi_sigma << two_atan_nbyw_by_n * unit_quaternion.vec(), log(scale);
return phi_sigma;
}
EIGEN_DEVICE_FUNC static RxSO3<Scalar> Exp(Tangent const& phi_sigma) {
Vector3 phi = phi_sigma.template segment<3>(0);
Scalar scale = exp(phi_sigma(3));
Scalar theta2 = phi.squaredNorm();
Scalar theta = sqrt(theta2);
Scalar imag_factor;
Scalar real_factor;
if (theta < EPS) {
Scalar theta4 = theta2 * theta2;
imag_factor = Scalar(0.5) - Scalar(1.0/48.0) * theta2 + Scalar(1.0/3840.0) * theta4;
real_factor = Scalar(1) - Scalar(1.0/8.0) * theta2 + Scalar(1.0/384.0) * theta4;
} else {
imag_factor = sin(.5 * theta) / theta;
real_factor = cos(.5 * theta);
}
Quaternion q(real_factor, imag_factor*phi.x(), imag_factor*phi.y(), imag_factor*phi.z());
return RxSO3<Scalar>(q, scale);
}
EIGEN_DEVICE_FUNC static Matrix3 calcW(Tangent const& phi_sigma) {
// left jacobian
using std::abs;
Matrix3 const I = Matrix3::Identity();
Scalar const one(1);
Scalar const half(0.5);
Vector3 const phi = phi_sigma.template segment<3>(0);
Scalar const sigma = phi_sigma(3);
Scalar const theta = phi.norm();
Matrix3 const Phi = SO3<Scalar>::hat(phi);
Matrix3 const Phi2 = Phi * Phi;
Scalar const scale = exp(sigma);
Scalar A, B, C;
if (abs(sigma) < EPS) {
C = one;
if (abs(theta) < EPS) {
A = half;
B = Scalar(1. / 6.);
} else {
Scalar theta_sq = theta * theta;
A = (one - cos(theta)) / theta_sq;
B = (theta - sin(theta)) / (theta_sq * theta);
}
} else {
C = (scale - one) / sigma;
if (abs(theta) < EPS) {
Scalar sigma_sq = sigma * sigma;
A = ((sigma - one) * scale + one) / sigma_sq;
B = (scale * half * sigma_sq + scale - one - sigma * scale) /
(sigma_sq * sigma);
} else {
Scalar theta_sq = theta * theta;
Scalar a = scale * sin(theta);
Scalar b = scale * cos(theta);
Scalar c = theta_sq + sigma * sigma;
A = (a * sigma + (one - b) * theta) / (theta * c);
B = (C - ((b - one) * sigma + a * theta) / (c)) * one / (theta_sq);
}
}
return A * Phi + B * Phi2 + C * I;
}
EIGEN_DEVICE_FUNC static Matrix3 calcWInv(Tangent const& phi_sigma) {
// left jacobian inverse
Matrix3 const I = Matrix3::Identity();
Scalar const half(0.5);
Scalar const one(1);
Scalar const two(2);
Vector3 const phi = phi_sigma.template segment<3>(0);
Scalar const sigma = phi_sigma(3);
Scalar const theta = phi.norm();
Scalar const scale = exp(sigma);
Matrix3 const Phi = SO3<Scalar>::hat(phi);
Matrix3 const Phi2 = Phi * Phi;
Scalar const scale_sq = scale * scale;
Scalar const theta_sq = theta * theta;
Scalar const sin_theta = sin(theta);
Scalar const cos_theta = cos(theta);
Scalar a, b, c;
if (abs(sigma * sigma) < EPS) {
c = one - half * sigma;
a = -half;
if (abs(theta_sq) < EPS) {
b = Scalar(1. / 12.);
} else {
b = (theta * sin_theta + two * cos_theta - two) /
(two * theta_sq * (cos_theta - one));
}
} else {
Scalar const scale_cu = scale_sq * scale;
c = sigma / (scale - one);
if (abs(theta_sq) < EPS) {
a = (-sigma * scale + scale - one) / ((scale - one) * (scale - one));
b = (scale_sq * sigma - two * scale_sq + scale * sigma + two * scale) /
(two * scale_cu - Scalar(6) * scale_sq + Scalar(6) * scale - two);
} else {
Scalar const s_sin_theta = scale * sin_theta;
Scalar const s_cos_theta = scale * cos_theta;
a = (theta * s_cos_theta - theta - sigma * s_sin_theta) /
(theta * (scale_sq - two * s_cos_theta + one));
b = -scale *
(theta * s_sin_theta - theta * sin_theta + sigma * s_cos_theta -
scale * sigma + sigma * cos_theta - sigma) /
(theta_sq * (scale_cu - two * scale * s_cos_theta - scale_sq +
two * s_cos_theta + scale - one));
}
}
return a * Phi + b * Phi2 + c * I;
}
EIGEN_DEVICE_FUNC static Adjoint left_jacobian(Tangent const& phi_sigma) {
// left jacobian
Adjoint J = Adjoint::Identity();
Vector3 phi = phi_sigma.template segment<3>(0);
J.template block<3,3>(0,0) = SO3<Scalar>::left_jacobian(phi);
return J;
}
EIGEN_DEVICE_FUNC static Adjoint left_jacobian_inverse(Tangent const& phi_sigma) {
// left jacobian inverse
Adjoint Jinv = Adjoint::Identity();
Vector3 phi = phi_sigma.template segment<3>(0);
Jinv.template block<3,3>(0,0) = SO3<Scalar>::left_jacobian_inverse(phi);
return Jinv;
}
EIGEN_DEVICE_FUNC static Eigen::Matrix<Scalar,3,4> act_jacobian(Point const& p) {
// jacobian action on a point
Eigen::Matrix<Scalar,3,4> Ja;
Ja << SO3<Scalar>::hat(-p), p;
return Ja;
}
EIGEN_DEVICE_FUNC static Eigen::Matrix<Scalar,4,4> act4_jacobian(Point4 const& p) {
// jacobian action on a point
Eigen::Matrix<Scalar,4,4> J = Eigen::Matrix<Scalar,4,4>::Zero();
J.template block<3,3>(0,0) = SO3<Scalar>::hat(-p.template segment<3>(0));
J.template block<3,1>(0,3) = p.template segment<3>(0);
return J;
}
private:
Quaternion unit_quaternion;
Scalar scale;
};
#endif