pablovela5620's picture
initial commit with working dpvo
899c526
#ifndef SE3_HEADER
#define SE3_HEADER
#include <stdio.h>
#include <Eigen/Dense>
#include <Eigen/Geometry>
#include "common.h"
#include "so3.h"
template <typename Scalar>
class SE3 {
public:
const static int constexpr K = 6; // manifold dimension
const static int constexpr N = 7; // embedding dimension
using Vector3 = Eigen::Matrix<Scalar,3,1>;
using Vector4 = Eigen::Matrix<Scalar,4,1>;
using Matrix3 = Eigen::Matrix<Scalar,3,3>;
using Tangent = Eigen::Matrix<Scalar,K,1>;
using Point = Eigen::Matrix<Scalar,3,1>;
using Point4 = Eigen::Matrix<Scalar,4,1>;
using Data = Eigen::Matrix<Scalar,N,1>;
using Transformation = Eigen::Matrix<Scalar,4,4>;
using Adjoint = Eigen::Matrix<Scalar,K,K>;
EIGEN_DEVICE_FUNC SE3() { translation = Vector3::Zero(); }
EIGEN_DEVICE_FUNC SE3(SO3<Scalar> const& so3, Vector3 const& t) : so3(so3), translation(t) {};
EIGEN_DEVICE_FUNC SE3(const Scalar *data) : translation(data), so3(data+3) {};
EIGEN_DEVICE_FUNC SE3<Scalar> inv() {
return SE3(so3.inv(), -(so3.inv()*translation));
}
EIGEN_DEVICE_FUNC Data data() const {
Data data_vec; data_vec << translation, so3.data();
return data_vec;
}
EIGEN_DEVICE_FUNC SE3<Scalar> operator*(SE3<Scalar> const& other) {
return SE3(so3 * other.so3, translation + so3 * other.translation);
}
EIGEN_DEVICE_FUNC Point operator*(Point const& p) const {
return so3 * p + translation;
}
EIGEN_DEVICE_FUNC Point4 act4(Point4 const& p) const {
Point4 p1; p1 << so3 * p.template segment<3>(0) + translation * p(3), p(3);
return p1;
}
EIGEN_DEVICE_FUNC Adjoint Adj() const {
Matrix3 R = so3.Matrix();
Matrix3 tx = SO3<Scalar>::hat(translation);
Matrix3 Zer = Matrix3::Zero();
Adjoint Ad;
Ad << R, tx*R, Zer, R;
return Ad;
}
EIGEN_DEVICE_FUNC Transformation Matrix() const {
Transformation T = Transformation::Identity();
T.template block<3,3>(0,0) = so3.Matrix();
T.template block<3,1>(0,3) = translation;
return T;
}
EIGEN_DEVICE_FUNC Transformation Matrix4x4() const {
return Matrix();
}
EIGEN_DEVICE_FUNC Tangent Adj(Tangent const& a) const {
return Adj() * a;
}
EIGEN_DEVICE_FUNC Tangent AdjT(Tangent const& a) const {
return Adj().transpose() * a;
}
EIGEN_DEVICE_FUNC static Transformation hat(Tangent const& tau_phi) {
Vector3 tau = tau_phi.template segment<3>(0);
Vector3 phi = tau_phi.template segment<3>(3);
Transformation TauPhi = Transformation::Zero();
TauPhi.template block<3,3>(0,0) = SO3<Scalar>::hat(phi);
TauPhi.template block<3,1>(0,3) = tau;
return TauPhi;
}
EIGEN_DEVICE_FUNC static Adjoint adj(Tangent const& tau_phi) {
Vector3 tau = tau_phi.template segment<3>(0);
Vector3 phi = tau_phi.template segment<3>(3);
Matrix3 Tau = SO3<Scalar>::hat(tau);
Matrix3 Phi = SO3<Scalar>::hat(phi);
Matrix3 Zer = Matrix3::Zero();
Adjoint ad;
ad << Phi, Tau, Zer, Phi;
return ad;
}
EIGEN_DEVICE_FUNC Eigen::Matrix<Scalar,7,7> orthogonal_projector() const {
// jacobian action on a point
Eigen::Matrix<Scalar,7,7> J = Eigen::Matrix<Scalar,7,7>::Zero();
J.template block<3,3>(0,0) = Matrix3::Identity();
J.template block<3,3>(0,3) = SO3<Scalar>::hat(-translation);
J.template block<4,4>(3,3) = so3.orthogonal_projector();
return J;
}
EIGEN_DEVICE_FUNC Tangent Log() const {
Vector3 phi = so3.Log();
Matrix3 Vinv = SO3<Scalar>::left_jacobian_inverse(phi);
Tangent tau_phi;
tau_phi << Vinv * translation, phi;
return tau_phi;
}
EIGEN_DEVICE_FUNC static SE3<Scalar> Exp(Tangent const& tau_phi) {
Vector3 tau = tau_phi.template segment<3>(0);
Vector3 phi = tau_phi.template segment<3>(3);
SO3<Scalar> so3 = SO3<Scalar>::Exp(phi);
Vector3 t = SO3<Scalar>::left_jacobian(phi) * tau;
return SE3<Scalar>(so3, t);
}
EIGEN_DEVICE_FUNC static Matrix3 calcQ(Tangent const& tau_phi) {
// Q matrix
Vector3 tau = tau_phi.template segment<3>(0);
Vector3 phi = tau_phi.template segment<3>(3);
Matrix3 Tau = SO3<Scalar>::hat(tau);
Matrix3 Phi = SO3<Scalar>::hat(phi);
Scalar theta = phi.norm();
Scalar theta_pow2 = theta * theta;
Scalar theta_pow4 = theta_pow2 * theta_pow2;
Scalar coef1 = (theta < EPS) ?
Scalar(1.0/6.0) - Scalar(1.0/120.0) * theta_pow2 :
(theta - sin(theta)) / (theta_pow2 * theta);
Scalar coef2 = (theta < EPS) ?
Scalar(1.0/24.0) - Scalar(1.0/720.0) * theta_pow2 :
(theta_pow2 + 2*cos(theta) - 2) / (2 * theta_pow4);
Scalar coef3 = (theta < EPS) ?
Scalar(1.0/120.0) - Scalar(1.0/2520.0) * theta_pow2 :
(2*theta - 3*sin(theta) + theta*cos(theta)) / (2 * theta_pow4 * theta);
Matrix3 Q = Scalar(0.5) * Tau +
coef1 * (Phi*Tau + Tau*Phi + Phi*Tau*Phi) +
coef2 * (Phi*Phi*Tau + Tau*Phi*Phi - 3*Phi*Tau*Phi) +
coef3 * (Phi*Tau*Phi*Phi + Phi*Phi*Tau*Phi);
return Q;
}
EIGEN_DEVICE_FUNC static Adjoint left_jacobian(Tangent const& tau_phi) {
// left jacobian
Vector3 phi = tau_phi.template segment<3>(3);
Matrix3 J = SO3<Scalar>::left_jacobian(phi);
Matrix3 Q = SE3<Scalar>::calcQ(tau_phi);
Matrix3 Zer = Matrix3::Zero();
Adjoint J6x6;
J6x6 << J, Q, Zer, J;
return J6x6;
}
EIGEN_DEVICE_FUNC static Adjoint left_jacobian_inverse(Tangent const& tau_phi) {
// left jacobian inverse
Vector3 tau = tau_phi.template segment<3>(0);
Vector3 phi = tau_phi.template segment<3>(3);
Matrix3 Jinv = SO3<Scalar>::left_jacobian_inverse(phi);
Matrix3 Q = SE3<Scalar>::calcQ(tau_phi);
Matrix3 Zer = Matrix3::Zero();
Adjoint J6x6;
J6x6 << Jinv, -Jinv * Q * Jinv, Zer, Jinv;
return J6x6;
}
EIGEN_DEVICE_FUNC static Eigen::Matrix<Scalar,3,6> act_jacobian(Point const& p) {
// jacobian action on a point
Eigen::Matrix<Scalar,3,6> J;
J.template block<3,3>(0,0) = Matrix3::Identity();
J.template block<3,3>(0,3) = SO3<Scalar>::hat(-p);
return J;
}
EIGEN_DEVICE_FUNC static Eigen::Matrix<Scalar,4,6> act4_jacobian(Point4 const& p) {
// jacobian action on a point
Eigen::Matrix<Scalar,4,6> J = Eigen::Matrix<Scalar,4,6>::Zero();
J.template block<3,3>(0,0) = p(3) * Matrix3::Identity();
J.template block<3,3>(0,3) = SO3<Scalar>::hat(-p.template segment<3>(0));
return J;
}
private:
SO3<Scalar> so3;
Vector3 translation;
};
#endif