Spaces:
Sleeping
Sleeping
template <typename Scalar> | |
class SO3 { | |
public: | |
const static int constexpr K = 3; // manifold dimension | |
const static int constexpr N = 4; // embedding dimension | |
using Vector3 = Eigen::Matrix<Scalar,3,1>; | |
using Vector4 = Eigen::Matrix<Scalar,4,1>; | |
using Matrix3 = Eigen::Matrix<Scalar,3,3>; | |
using Tangent = Eigen::Matrix<Scalar,K,1>; | |
using Data = Eigen::Matrix<Scalar,N,1>; | |
using Point = Eigen::Matrix<Scalar,3,1>; | |
using Point4 = Eigen::Matrix<Scalar,4,1>; | |
using Transformation = Eigen::Matrix<Scalar,3,3>; | |
using Adjoint = Eigen::Matrix<Scalar,K,K>; | |
using Quaternion = Eigen::Quaternion<Scalar>; | |
EIGEN_DEVICE_FUNC SO3(Quaternion const& q) : unit_quaternion(q) { | |
unit_quaternion.normalize(); | |
}; | |
EIGEN_DEVICE_FUNC SO3(const Scalar *data) : unit_quaternion(data) { | |
unit_quaternion.normalize(); | |
}; | |
EIGEN_DEVICE_FUNC SO3() { | |
unit_quaternion = Quaternion::Identity(); | |
} | |
EIGEN_DEVICE_FUNC SO3<Scalar> inv() { | |
return SO3<Scalar>(unit_quaternion.conjugate()); | |
} | |
EIGEN_DEVICE_FUNC Data data() const { | |
return unit_quaternion.coeffs(); | |
} | |
EIGEN_DEVICE_FUNC SO3<Scalar> operator*(SO3<Scalar> const& other) { | |
return SO3(unit_quaternion * other.unit_quaternion); | |
} | |
EIGEN_DEVICE_FUNC Point operator*(Point const& p) const { | |
const Quaternion& q = unit_quaternion; | |
Point uv = q.vec().cross(p); | |
uv += uv; | |
return p + q.w()*uv + q.vec().cross(uv); | |
} | |
EIGEN_DEVICE_FUNC Point4 act4(Point4 const& p) const { | |
Point4 p1; p1 << this->operator*(p.template segment<3>(0)), p(3); | |
return p1; | |
} | |
EIGEN_DEVICE_FUNC Adjoint Adj() const { | |
return unit_quaternion.toRotationMatrix(); | |
} | |
EIGEN_DEVICE_FUNC Transformation Matrix() const { | |
return unit_quaternion.toRotationMatrix(); | |
} | |
EIGEN_DEVICE_FUNC Eigen::Matrix<Scalar,4,4> Matrix4x4() const { | |
Eigen::Matrix<Scalar,4,4> T = Eigen::Matrix<Scalar,4,4>::Identity(); | |
T.template block<3,3>(0,0) = Matrix(); | |
return T; | |
} | |
EIGEN_DEVICE_FUNC Eigen::Matrix<Scalar,4,4> orthogonal_projector() const { | |
// jacobian action on a point | |
Eigen::Matrix<Scalar,4,4> J = Eigen::Matrix<Scalar,4,4>::Zero(); | |
J.template block<3,3>(0,0) = 0.5 * ( | |
unit_quaternion.w() * Matrix3::Identity() + | |
SO3<Scalar>::hat(-unit_quaternion.vec()) | |
); | |
J.template block<1,3>(3,0) = 0.5 * (-unit_quaternion.vec()); | |
return J; | |
} | |
EIGEN_DEVICE_FUNC Tangent Adj(Tangent const& a) const { | |
return Adj() * a; | |
} | |
EIGEN_DEVICE_FUNC Tangent AdjT(Tangent const& a) const { | |
return Adj().transpose() * a; | |
} | |
EIGEN_DEVICE_FUNC static Transformation hat(Tangent const& phi) { | |
Transformation Phi; | |
Phi << | |
0.0, -phi(2), phi(1), | |
phi(2), 0.0, -phi(0), | |
-phi(1), phi(0), 0.0; | |
return Phi; | |
} | |
EIGEN_DEVICE_FUNC static Adjoint adj(Tangent const& phi) { | |
return SO3<Scalar>::hat(phi); | |
} | |
EIGEN_DEVICE_FUNC Tangent Log() const { | |
using std::abs; | |
using std::atan; | |
using std::sqrt; | |
Scalar squared_n = unit_quaternion.vec().squaredNorm(); | |
Scalar w = unit_quaternion.w(); | |
Scalar two_atan_nbyw_by_n; | |
/// Atan-based log thanks to | |
/// | |
/// C. Hertzberg et al.: | |
/// "Integrating Generic Sensor Fusion Algorithms with Sound State | |
/// Representation through Encapsulation of Manifolds" | |
/// Information Fusion, 2011 | |
if (squared_n < EPS * EPS) { | |
// If quaternion is normalized and n=0, then w should be 1; | |
// w=0 should never happen here! | |
Scalar squared_w = w * w; | |
two_atan_nbyw_by_n = | |
Scalar(2) / w - Scalar(2.0/3.0) * (squared_n) / (w * squared_w); | |
} else { | |
Scalar n = sqrt(squared_n); | |
if (abs(w) < EPS) { | |
if (w > Scalar(0)) { | |
two_atan_nbyw_by_n = Scalar(PI) / n; | |
} else { | |
two_atan_nbyw_by_n = -Scalar(PI) / n; | |
} | |
} else { | |
two_atan_nbyw_by_n = Scalar(2) * atan(n / w) / n; | |
} | |
} | |
return two_atan_nbyw_by_n * unit_quaternion.vec(); | |
} | |
EIGEN_DEVICE_FUNC static SO3<Scalar> Exp(Tangent const& phi) { | |
Scalar theta2 = phi.squaredNorm(); | |
Scalar theta = sqrt(theta2); | |
Scalar imag_factor; | |
Scalar real_factor; | |
if (theta < EPS) { | |
Scalar theta4 = theta2 * theta2; | |
imag_factor = Scalar(0.5) - Scalar(1.0/48.0) * theta2 + Scalar(1.0/3840.0) * theta4; | |
real_factor = Scalar(1) - Scalar(1.0/8.0) * theta2 + Scalar(1.0/384.0) * theta4; | |
} else { | |
imag_factor = sin(.5 * theta) / theta; | |
real_factor = cos(.5 * theta); | |
} | |
Quaternion q(real_factor, imag_factor*phi.x(), imag_factor*phi.y(), imag_factor*phi.z()); | |
return SO3<Scalar>(q); | |
} | |
EIGEN_DEVICE_FUNC static Adjoint left_jacobian(Tangent const& phi) { | |
// left jacobian | |
Matrix3 I = Matrix3::Identity(); | |
Matrix3 Phi = SO3<Scalar>::hat(phi); | |
Matrix3 Phi2 = Phi * Phi; | |
Scalar theta2 = phi.squaredNorm(); | |
Scalar theta = sqrt(theta2); | |
Scalar coef1 = (theta < EPS) ? | |
Scalar(1.0/2.0) - Scalar(1.0/24.0) * theta2 : | |
(1.0 - cos(theta)) / theta2; | |
Scalar coef2 = (theta < EPS) ? | |
Scalar(1.0/6.0) - Scalar(1.0/120.0) * theta2 : | |
(theta - sin(theta)) / (theta2 * theta); | |
return I + coef1 * Phi + coef2 * Phi2; | |
} | |
EIGEN_DEVICE_FUNC static Adjoint left_jacobian_inverse(Tangent const& phi) { | |
// left jacobian inverse | |
Matrix3 I = Matrix3::Identity(); | |
Matrix3 Phi = SO3<Scalar>::hat(phi); | |
Matrix3 Phi2 = Phi * Phi; | |
Scalar theta2 = phi.squaredNorm(); | |
Scalar theta = sqrt(theta2); | |
Scalar half_theta = Scalar(.5) * theta ; | |
Scalar coef2 = (theta < EPS) ? Scalar(1.0/12.0) : | |
(Scalar(1) - | |
theta * cos(half_theta) / (Scalar(2) * sin(half_theta))) / | |
(theta * theta); | |
return I + Scalar(-0.5) * Phi + coef2 * Phi2; | |
} | |
EIGEN_DEVICE_FUNC static Eigen::Matrix<Scalar,3,3> act_jacobian(Point const& p) { | |
// jacobian action on a point | |
return SO3<Scalar>::hat(-p); | |
} | |
EIGEN_DEVICE_FUNC static Eigen::Matrix<Scalar,4,3> act4_jacobian(Point4 const& p) { | |
// jacobian action on a point | |
Eigen::Matrix<Scalar,4,3> J = Eigen::Matrix<Scalar,4,3>::Zero(); | |
J.template block<3,3>(0,0) = SO3<Scalar>::hat(-p.template segment<3>(0)); | |
return J; | |
} | |
private: | |
Quaternion unit_quaternion; | |
}; | |