MiniDPVO / mini_dpvo /logger.py
pablovela5620's picture
initial commit with working dpvo
899c526
import torch
from torch.utils.tensorboard import SummaryWriter
SUM_FREQ = 100
class Logger:
def __init__(self, name, scheduler):
self.total_steps = 0
self.running_loss = {}
self.writer = None
self.name = name
self.scheduler = scheduler
def _print_training_status(self):
if self.writer is None:
self.writer = SummaryWriter("runs/{}".format(self.name))
print([k for k in self.running_loss])
lr = self.scheduler.get_lr().pop()
metrics_data = [self.running_loss[k]/SUM_FREQ for k in self.running_loss.keys()]
training_str = "[{:6d}, {:10.7f}] ".format(self.total_steps+1, lr)
metrics_str = ("{:10.4f}, "*len(metrics_data)).format(*metrics_data)
# print the training status
print(training_str + metrics_str)
for key in self.running_loss:
val = self.running_loss[key] / SUM_FREQ
self.writer.add_scalar(key, val, self.total_steps)
self.running_loss[key] = 0.0
def push(self, metrics):
for key in metrics:
if key not in self.running_loss:
self.running_loss[key] = 0.0
self.running_loss[key] += metrics[key]
if self.total_steps % SUM_FREQ == SUM_FREQ-1:
self._print_training_status()
self.running_loss = {}
self.total_steps += 1
def write_dict(self, results):
if self.writer is None:
self.writer = SummaryWriter("runs/{}".format(self.name))
print([k for k in self.running_loss])
for key in results:
self.writer.add_scalar(key, results[key], self.total_steps)
def close(self):
self.writer.close()