Spaces:
Build error
Build error
Upload gradio_app.py with huggingface_hub
Browse files- gradio_app.py +177 -0
gradio_app.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
try:
|
5 |
+
import spaces # type: ignore
|
6 |
+
|
7 |
+
IN_SPACES = True
|
8 |
+
except ImportError:
|
9 |
+
print("Not running on Zero")
|
10 |
+
IN_SPACES = False
|
11 |
+
import torch
|
12 |
+
|
13 |
+
from monopriors.relative_depth_models import (
|
14 |
+
DepthAnythingV2Predictor,
|
15 |
+
RelativeDepthPrediction,
|
16 |
+
UniDepthRelativePredictor,
|
17 |
+
get_relative_predictor,
|
18 |
+
RELATIVE_PREDICTORS,
|
19 |
+
)
|
20 |
+
from monopriors.relative_depth_models.base_relative_depth import BaseRelativePredictor
|
21 |
+
from monopriors.rr_logging_utils import (
|
22 |
+
log_relative_pred,
|
23 |
+
create_depth_comparison_blueprint,
|
24 |
+
)
|
25 |
+
import rerun as rr
|
26 |
+
from gradio_rerun import Rerun
|
27 |
+
from pathlib import Path
|
28 |
+
from typing import Literal, get_args
|
29 |
+
import gc
|
30 |
+
|
31 |
+
from jaxtyping import UInt8
|
32 |
+
|
33 |
+
title = "# Depth Comparison"
|
34 |
+
description1 = """Demo to help compare different depth models. Including both Scale | Shift Invariant and Metric Depth types."""
|
35 |
+
description2 = """Invariant models mean they have no true scale and are only relative, where as Metric models have a true scale and are absolute (meters)."""
|
36 |
+
model_load_status: str = "Models loaded and ready to use!"
|
37 |
+
DEVICE: Literal["cuda"] | Literal["cpu"] = (
|
38 |
+
"cuda" if torch.cuda.is_available() else "cpu"
|
39 |
+
)
|
40 |
+
if gr.NO_RELOAD:
|
41 |
+
MODEL_1 = DepthAnythingV2Predictor(device=DEVICE)
|
42 |
+
MODEL_2 = UniDepthRelativePredictor(device=DEVICE)
|
43 |
+
|
44 |
+
|
45 |
+
def predict_depth(
|
46 |
+
model: BaseRelativePredictor, rgb: UInt8[np.ndarray, "h w 3"]
|
47 |
+
) -> RelativeDepthPrediction:
|
48 |
+
model.set_model_device(device=DEVICE)
|
49 |
+
relative_pred: RelativeDepthPrediction = model(rgb, None)
|
50 |
+
return relative_pred
|
51 |
+
|
52 |
+
|
53 |
+
if IN_SPACES:
|
54 |
+
predict_depth = spaces.GPU(predict_depth)
|
55 |
+
# remove any model that fails on zerogpu spaces
|
56 |
+
|
57 |
+
|
58 |
+
def load_models(
|
59 |
+
model_1: RELATIVE_PREDICTORS,
|
60 |
+
model_2: RELATIVE_PREDICTORS,
|
61 |
+
progress=gr.Progress(),
|
62 |
+
) -> str:
|
63 |
+
global MODEL_1, MODEL_2
|
64 |
+
# delete the previous models and clear gpu memory
|
65 |
+
if "MODEL_1" in globals():
|
66 |
+
del MODEL_1
|
67 |
+
if "MODEL_2" in globals():
|
68 |
+
del MODEL_2
|
69 |
+
torch.cuda.empty_cache()
|
70 |
+
gc.collect()
|
71 |
+
|
72 |
+
progress(0, desc="Loading Models please wait...")
|
73 |
+
|
74 |
+
models: list[int] = [model_1, model_2]
|
75 |
+
loaded_models = []
|
76 |
+
|
77 |
+
for model in models:
|
78 |
+
loaded_models.append(get_relative_predictor(model)(device=DEVICE))
|
79 |
+
|
80 |
+
progress(0.5, desc=f"Loaded {model}")
|
81 |
+
|
82 |
+
progress(1, desc="Models Loaded")
|
83 |
+
MODEL_1, MODEL_2 = loaded_models
|
84 |
+
|
85 |
+
return model_load_status
|
86 |
+
|
87 |
+
|
88 |
+
@rr.thread_local_stream("depth")
|
89 |
+
def on_submit(rgb: UInt8[np.ndarray, "h w 3"]):
|
90 |
+
stream: rr.BinaryStream = rr.binary_stream()
|
91 |
+
models_list = [MODEL_1, MODEL_2]
|
92 |
+
blueprint = create_depth_comparison_blueprint(models_list)
|
93 |
+
rr.send_blueprint(blueprint)
|
94 |
+
try:
|
95 |
+
for model in models_list:
|
96 |
+
# get the name of the model
|
97 |
+
parent_log_path = Path(f"{model.__class__.__name__}")
|
98 |
+
rr.log(f"{parent_log_path}", rr.ViewCoordinates.RDF, timeless=True)
|
99 |
+
|
100 |
+
relative_pred: RelativeDepthPrediction = predict_depth(model, rgb)
|
101 |
+
|
102 |
+
log_relative_pred(
|
103 |
+
parent_log_path=parent_log_path,
|
104 |
+
relative_pred=relative_pred,
|
105 |
+
rgb_hw3=rgb,
|
106 |
+
)
|
107 |
+
|
108 |
+
yield stream.read()
|
109 |
+
except Exception as e:
|
110 |
+
raise gr.Error(f"Error with model {model.__class__.__name__}: {e}")
|
111 |
+
|
112 |
+
|
113 |
+
with gr.Blocks() as demo:
|
114 |
+
gr.Markdown(title)
|
115 |
+
gr.Markdown(description1)
|
116 |
+
gr.Markdown(description2)
|
117 |
+
gr.Markdown("### Depth Prediction demo")
|
118 |
+
|
119 |
+
with gr.Row():
|
120 |
+
input_image = gr.Image(
|
121 |
+
label="Input Image",
|
122 |
+
type="numpy",
|
123 |
+
height=300,
|
124 |
+
)
|
125 |
+
with gr.Column():
|
126 |
+
gr.Radio(
|
127 |
+
choices=["Scale | Shift Invariant", "Metric (TODO)"],
|
128 |
+
label="Depth Type",
|
129 |
+
value="Scale | Shift Invariant",
|
130 |
+
interactive=True,
|
131 |
+
)
|
132 |
+
with gr.Row():
|
133 |
+
model_1_dropdown = gr.Dropdown(
|
134 |
+
choices=list(get_args(RELATIVE_PREDICTORS)),
|
135 |
+
label="Model1",
|
136 |
+
value="DepthAnythingV2Predictor",
|
137 |
+
)
|
138 |
+
model_2_dropdown = gr.Dropdown(
|
139 |
+
choices=list(get_args(RELATIVE_PREDICTORS)),
|
140 |
+
label="Model2",
|
141 |
+
value="UniDepthRelativePredictor",
|
142 |
+
)
|
143 |
+
model_status = gr.Textbox(
|
144 |
+
label="Model Status",
|
145 |
+
value=model_load_status,
|
146 |
+
interactive=False,
|
147 |
+
)
|
148 |
+
|
149 |
+
with gr.Row():
|
150 |
+
submit = gr.Button(value="Compute Depth")
|
151 |
+
load_models_btn = gr.Button(value="Load Models")
|
152 |
+
rr_viewer = Rerun(streaming=True, height=800)
|
153 |
+
|
154 |
+
submit.click(
|
155 |
+
on_submit,
|
156 |
+
inputs=[input_image],
|
157 |
+
outputs=[rr_viewer],
|
158 |
+
)
|
159 |
+
|
160 |
+
load_models_btn.click(
|
161 |
+
load_models,
|
162 |
+
inputs=[model_1_dropdown, model_2_dropdown],
|
163 |
+
outputs=[model_status],
|
164 |
+
)
|
165 |
+
|
166 |
+
examples_paths = Path("examples").glob("*.jpeg")
|
167 |
+
examples_list = sorted([str(path) for path in examples_paths])
|
168 |
+
examples = gr.Examples(
|
169 |
+
examples=examples_list,
|
170 |
+
inputs=[input_image],
|
171 |
+
outputs=[rr_viewer],
|
172 |
+
fn=on_submit,
|
173 |
+
cache_examples=False,
|
174 |
+
)
|
175 |
+
|
176 |
+
if __name__ == "__main__":
|
177 |
+
demo.launch()
|