Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,286 Bytes
14788de 5fff857 14788de 20fff88 9ec56ae 20fff88 9ec56ae 20fff88 9ec56ae 20fff88 9ec56ae 14788de 89d8b05 1bc0980 14788de 5fff857 9ec56ae 5fff857 20fff88 9ec56ae 20fff88 1bc0980 9ec56ae 20fff88 9ec56ae 20fff88 9ec56ae 89d8b05 5fff857 89d8b05 5fff857 89d8b05 5fff857 14788de 9ec56ae 14788de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
import gradio as gr
import spaces
import torch
from gradio_rerun import Rerun
import rerun as rr
import rerun.blueprint as rrb
from pathlib import Path
import uuid
from mini_dust3r.api import OptimizedResult, inferece_dust3r, log_optimized_result
from mini_dust3r.model import AsymmetricCroCo3DStereo
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
model = AsymmetricCroCo3DStereo.from_pretrained(
"naver/DUSt3R_ViTLarge_BaseDecoder_512_dpt"
).to(DEVICE)
def create_blueprint(image_name_list: list[str], log_path: Path) -> rrb.Blueprint:
# dont show 2d views if there are more than 4 images as to not clutter the view
if len(image_name_list) > 4:
blueprint = rrb.Blueprint(
rrb.Horizontal(
rrb.Spatial3DView(origin=f"{log_path}"),
),
collapse_panels=True,
)
else:
blueprint = rrb.Blueprint(
rrb.Horizontal(
contents=[
rrb.Spatial3DView(origin=f"{log_path}"),
rrb.Vertical(
contents=[
rrb.Spatial2DView(
origin=f"{log_path}/camera_{i}/pinhole/",
contents=[
"+ $origin/**",
],
)
for i in range(len(image_name_list))
]
),
],
column_shares=[3, 1],
),
collapse_panels=True,
)
return blueprint
@spaces.GPU
def predict(image_name_list: list[str] | str):
# check if is list or string and if not raise error
if not isinstance(image_name_list, list) and not isinstance(image_name_list, str):
raise gr.Error(
f"Input must be a list of strings or a string, got: {type(image_name_list)}"
)
uuid_str = str(uuid.uuid4())
filename = Path(f"/tmp/gradio/{uuid_str}.rrd")
rr.init(f"{uuid_str}")
log_path = Path("world")
if isinstance(image_name_list, str):
image_name_list = [image_name_list]
optimized_results: OptimizedResult = inferece_dust3r(
image_dir_or_list=image_name_list,
model=model,
device=DEVICE,
batch_size=1,
)
blueprint: rrb.Blueprint = create_blueprint(image_name_list, log_path)
rr.send_blueprint(blueprint)
rr.set_time_sequence("sequence", 0)
log_optimized_result(optimized_results, log_path)
rr.save(filename.as_posix())
return filename.as_posix()
with gr.Blocks(
css=""".gradio-container {margin: 0 !important; min-width: 100%};""",
title="Mini-DUSt3R Demo",
) as demo:
# scene state is save so that you can change conf_thr, cam_size... without rerunning the inference
gr.HTML('<h2 style="text-align: center;">Mini-DUSt3R Demo</h2>')
gr.HTML(
'<p style="text-align: center;">Unofficial DUSt3R demo using the mini-dust3r pip package</p>'
)
gr.HTML(
'<p style="text-align: center;">More info <a href="https://github.com/pablovela5620/mini-dust3r">here</a></p>'
)
with gr.Tab(label="Single Image"):
with gr.Column():
single_image = gr.Image(type="filepath", height=300)
run_btn_single = gr.Button("Run")
rerun_viewer_single = Rerun(height=900)
run_btn_single.click(
fn=predict, inputs=[single_image], outputs=[rerun_viewer_single]
)
example_single_dir = Path("examples/single_image")
example_single_files = sorted(example_single_dir.glob("*.png"))
examples_single = gr.Examples(
examples=example_single_files,
inputs=[single_image],
outputs=[rerun_viewer_single],
fn=predict,
cache_examples="lazy",
)
with gr.Tab(label="Multi Image"):
with gr.Column():
multi_files = gr.File(file_count="multiple")
run_btn_multi = gr.Button("Run")
rerun_viewer_multi = Rerun(height=900)
run_btn_multi.click(
fn=predict, inputs=[multi_files], outputs=[rerun_viewer_multi]
)
demo.launch()
|