Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
import torch | |
from gradio_rerun import Rerun | |
import rerun as rr | |
import rerun.blueprint as rrb | |
from pathlib import Path | |
import uuid | |
from mini_dust3r.api import OptimizedResult, inferece_dust3r, log_optimized_result | |
from mini_dust3r.model import AsymmetricCroCo3DStereo | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
model = AsymmetricCroCo3DStereo.from_pretrained( | |
"naver/DUSt3R_ViTLarge_BaseDecoder_512_dpt" | |
).to(DEVICE) | |
def predict(image_name_list: list[str]): | |
uuid_str = str(uuid.uuid4()) | |
filename = Path(f"/tmp/gradio/{uuid_str}.rrd") | |
rr.init(f"{uuid_str}") | |
log_path = Path("world") | |
optimized_results: OptimizedResult = inferece_dust3r( | |
image_dir_or_list=image_name_list, | |
model=model, | |
device=DEVICE, | |
batch_size=1, | |
) | |
rr.set_time_sequence("sequence", 0) | |
log_optimized_result(optimized_results, log_path) | |
# blueprint = rrb.Spatial3DView(origin="cube") | |
rr.save(filename.as_posix()) | |
return filename.as_posix() | |
with gr.Blocks( | |
css=""".gradio-container {margin: 0 !important; min-width: 100%};""", | |
title="Mini-DUSt3R Demo", | |
) as demo: | |
# scene state is save so that you can change conf_thr, cam_size... without rerunning the inference | |
gr.HTML('<h2 style="text-align: center;">Mini-DUSt3R Demo</h2>') | |
with gr.Column(): | |
inputfiles = gr.File(file_count="multiple") | |
rerun_viewer = Rerun(height=900) | |
run_btn = gr.Button("Run") | |
run_btn.click(fn=predict, inputs=[inputfiles], outputs=[rerun_viewer]) | |
demo.launch() | |