import gradio as gr import spaces import torch from gradio_rerun import Rerun import rerun as rr import rerun.blueprint as rrb from pathlib import Path import uuid from mini_dust3r.api import OptimizedResult, inferece_dust3r, log_optimized_result from mini_dust3r.model import AsymmetricCroCo3DStereo DEVICE = "cuda" if torch.cuda.is_available() else "cpu" model = AsymmetricCroCo3DStereo.from_pretrained( "naver/DUSt3R_ViTLarge_BaseDecoder_512_dpt" ).to(DEVICE) @spaces.GPU def predict(image_name_list: list[str]): uuid_str = str(uuid.uuid4()) filename = Path(f"/tmp/gradio/{uuid_str}.rrd") rr.init(f"{uuid_str}") log_path = Path("world") optimized_results: OptimizedResult = inferece_dust3r( image_dir_or_list=image_name_list, model=model, device=DEVICE, batch_size=1, ) rr.set_time_sequence("sequence", 0) log_optimized_result(optimized_results, log_path) # blueprint = rrb.Spatial3DView(origin="cube") rr.save(filename.as_posix()) return filename.as_posix() with gr.Blocks( css=""".gradio-container {margin: 0 !important; min-width: 100%};""", title="Mini-DUSt3R Demo", ) as demo: # scene state is save so that you can change conf_thr, cam_size... without rerunning the inference gr.HTML('

Mini-DUSt3R Demo

') with gr.Column(): inputfiles = gr.File(file_count="multiple") rerun_viewer = Rerun(height=900) run_btn = gr.Button("Run") run_btn.click(fn=predict, inputs=[inputfiles], outputs=[rerun_viewer]) demo.launch()