import gradio as gr from transformers import pipeline from PIL import Image model = "pacman2223/test-mod" image = Image.open("./sample_cv.png") image.save("cv.png") image = Image.open("./sample_hack.png") image.save("hack.png") def demo_process(img, question): qa_pipeline = pipeline("document-question-answering", model=model) qa_pipeline(img, question) return qa_pipeline["answer"] demo = gr.Interface( fn=demo_process, inputs=["image", "text"], outputs="json", title=f"BIP demonstration for `layoutlmv2` task", description="""This model is trained with 1200 receipt images of Docqva dataset.
""", examples=[["cv.png"], ["hack.png"]], cache_examples=False, ) demo.launch()