|
from base64 import b64encode |
|
import gradio as gr |
|
import numpy as np |
|
import torch |
|
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel |
|
|
|
from matplotlib import pyplot as plt |
|
from pathlib import Path |
|
from PIL import Image |
|
from torch import autocast |
|
from torchvision import transforms as tfms |
|
from tqdm.auto import tqdm |
|
from transformers import CLIPTextModel, CLIPTokenizer, logging |
|
import os |
|
MY_TOKEN=os.environ.get('Stable_Diffusion') |
|
import cv2 |
|
import torchvision.transforms as T |
|
|
|
torch.manual_seed(1) |
|
logging.set_verbosity_error() |
|
|
|
torch_device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae",use_auth_token=MY_TOKEN) |
|
|
|
|
|
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") |
|
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") |
|
|
|
|
|
unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder='unet') |
|
|
|
|
|
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000) |
|
|
|
|
|
vae = vae.to(torch_device) |
|
text_encoder = text_encoder.to(torch_device) |
|
unet = unet.to(torch_device) |
|
|
|
style_files = ['bird_style.bin', 'ronaldo.bin', |
|
'pop_art.bin', 'threestooges.bin', |
|
'bflan.bin'] |
|
|
|
images_without_loss = [] |
|
images_with_loss = [] |
|
|
|
seed_values = [10,12,18,30,32] |
|
height = 512 |
|
width = 512 |
|
num_inference_steps = 30 |
|
guidance_scale = 7.5 |
|
num_styles = len(style_files) |
|
|
|
|
|
def set_timesteps(scheduler, num_inference_steps): |
|
scheduler.set_timesteps(num_inference_steps) |
|
scheduler.timesteps = scheduler.timesteps.to(torch.float32) |
|
|
|
def get_output_embeds(input_embeddings): |
|
|
|
bsz, seq_len = input_embeddings.shape[:2] |
|
causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype) |
|
|
|
|
|
|
|
encoder_outputs = text_encoder.text_model.encoder( |
|
inputs_embeds=input_embeddings, |
|
attention_mask=None, |
|
causal_attention_mask=causal_attention_mask.to(torch_device), |
|
output_attentions=None, |
|
output_hidden_states=True, |
|
return_dict=None, |
|
) |
|
|
|
|
|
output = encoder_outputs[0] |
|
|
|
|
|
output = text_encoder.text_model.final_layer_norm(output) |
|
|
|
|
|
return output |
|
|
|
def get_style_embeddings(style_file): |
|
style_embed = torch.load(style_file) |
|
style_name = list(style_embed.keys())[0] |
|
return style_embed[style_name] |
|
|
|
import torch |
|
|
|
def vibrance_loss(image): |
|
|
|
std_dev = torch.std(image, dim=(2, 3)) |
|
|
|
mean_std_dev = torch.mean(std_dev) |
|
|
|
scale_factor = 100.0 |
|
|
|
loss = -scale_factor * mean_std_dev |
|
return loss |
|
|
|
|
|
from torchvision.transforms import ToTensor |
|
|
|
def pil_to_latent(input_im): |
|
|
|
with torch.no_grad(): |
|
latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) |
|
return 0.18215 * latent.latent_dist.sample() |
|
|
|
def latents_to_pil(latents): |
|
|
|
latents = (1 / 0.18215) * latents |
|
with torch.no_grad(): |
|
image = vae.decode(latents).sample |
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
image = image.detach().cpu().permute(0, 2, 3, 1).numpy() |
|
images = (image * 255).round().astype("uint8") |
|
pil_images = [Image.fromarray(image) for image in images] |
|
return pil_images |
|
|
|
def additional_guidance(latents, scheduler, noise_pred, t, sigma, custom_loss_fn): |
|
|
|
|
|
latents = latents.detach().requires_grad_() |
|
|
|
|
|
latents_x0 = latents - sigma * noise_pred |
|
|
|
|
|
|
|
|
|
denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 |
|
|
|
|
|
loss = custom_loss_fn(denoised_images) |
|
|
|
|
|
cond_grad = torch.autograd.grad(loss, latents, allow_unused=False)[0] |
|
|
|
|
|
latents = latents.detach() - cond_grad * sigma**2 |
|
return latents, loss |
|
|
|
|
|
def generate_with_embs(text_embeddings, max_length, random_seed, loss_fn = None): |
|
generator = torch.manual_seed(random_seed) |
|
batch_size = 1 |
|
|
|
uncond_input = tokenizer( |
|
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt" |
|
) |
|
with torch.no_grad(): |
|
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0] |
|
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) |
|
|
|
|
|
set_timesteps(scheduler, num_inference_steps) |
|
|
|
|
|
latents = torch.randn( |
|
(batch_size, unet.in_channels, height // 8, width // 8), |
|
generator=generator, |
|
) |
|
latents = latents.to(torch_device) |
|
latents = latents * scheduler.init_noise_sigma |
|
|
|
|
|
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)): |
|
|
|
latent_model_input = torch.cat([latents] * 2) |
|
sigma = scheduler.sigmas[i] |
|
latent_model_input = scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
with torch.no_grad(): |
|
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"] |
|
|
|
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
if loss_fn is not None: |
|
if i%2 == 0: |
|
latents, custom_loss = additional_guidance(latents, scheduler, noise_pred, t, sigma, loss_fn) |
|
|
|
|
|
latents = scheduler.step(noise_pred, t, latents).prev_sample |
|
|
|
return latents_to_pil(latents)[0] |
|
|
|
def generate_images(prompt, style_num=None, random_seed=41, custom_loss_fn = None): |
|
eos_pos = len(prompt.split())+1 |
|
|
|
style_token_embedding = None |
|
if style_num: |
|
style_token_embedding = get_style_embeddings(style_files[style_num]) |
|
|
|
|
|
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt") |
|
max_length = text_input.input_ids.shape[-1] |
|
input_ids = text_input.input_ids.to(torch_device) |
|
|
|
|
|
token_emb_layer = text_encoder.text_model.embeddings.token_embedding |
|
token_embeddings = token_emb_layer(input_ids) |
|
|
|
|
|
if style_token_embedding is not None: |
|
token_embeddings[-1, eos_pos, :] = style_token_embedding |
|
|
|
|
|
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding |
|
position_ids = text_encoder.text_model.embeddings.position_ids[:, :77] |
|
position_embeddings = pos_emb_layer(position_ids) |
|
input_embeddings = token_embeddings + position_embeddings |
|
|
|
|
|
modified_output_embeddings = get_output_embeds(input_embeddings) |
|
|
|
|
|
generated_image = generate_with_embs(modified_output_embeddings, max_length, random_seed, custom_loss_fn) |
|
return generated_image |
|
|
|
import matplotlib.pyplot as plt |
|
|
|
def display_images_in_rows(images_with_titles, titles): |
|
num_images = len(images_with_titles) |
|
rows = 5 |
|
columns = 1 if num_images == 5 else 2 |
|
fig, axes = plt.subplots(rows, columns + 1, figsize=(15, 5 * rows)) |
|
|
|
for r in range(rows): |
|
|
|
axes[r, 0].text(0.5, 0.5, titles[r], ha='center', va='center') |
|
axes[r, 0].axis('off') |
|
|
|
|
|
if columns == 2: |
|
axes[r, 1].set_title("Without Loss", pad=10) |
|
axes[r, 2].set_title("With Loss", pad=10) |
|
|
|
for c in range(1, columns + 1): |
|
index = r * columns + c - 1 |
|
if index < num_images: |
|
image, _ = images_with_titles[index] |
|
axes[r, c].imshow(image) |
|
axes[r, c].axis('off') |
|
|
|
return fig |
|
|
|
|
|
|
|
def image_generator(prompt = "sky", loss_function=None): |
|
images_without_loss = [] |
|
images_with_loss = [] |
|
if loss_function == "Yes": |
|
loss_function = vibrance_loss |
|
else: |
|
loss_function = None |
|
|
|
for i in range(num_styles): |
|
generated_img = generate_images(prompt,style_num = i,random_seed = seed_values[i],custom_loss_fn = None) |
|
images_without_loss.append(generated_img) |
|
if loss_function: |
|
generated_img = generate_images(prompt,style_num = i,random_seed = seed_values[i],custom_loss_fn = loss_function) |
|
images_with_loss.append(generated_img) |
|
|
|
generated_sd_images = [] |
|
titles = ["<birb-style>", "'<ronaldo>", "<pop-art>", "<threestooges>", "<Marbled-painting>"] |
|
|
|
for i in range(len(titles)): |
|
generated_sd_images.append((images_without_loss[i], titles[i])) |
|
if images_with_loss != []: |
|
generated_sd_images.append((images_with_loss[i], titles[i])) |
|
|
|
|
|
return display_images_in_rows(generated_sd_images, titles) |
|
|
|
description = "Generate Image from Prompt.Time Taken for Image is around 20 minutes. Please run it on GPU for better performance" |
|
|
|
demo = gr.Interface(image_generator, |
|
inputs=[gr.Textbox(label="Enter prompt for generation", type="text", value="snoopy sitting on a bench"), |
|
gr.Radio(["Yes", "No"], value="No" , label="Apply vibrance loss")], |
|
outputs=gr.Plot(label="Generated Images"), title = "Stable Diffusion using Textual Inversion", description=description) |
|
demo.launch() |