Commit
·
f6a2113
1
Parent(s):
af5f9f5
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,9 @@
|
|
1 |
-
#!pip install -q --upgrade transformers diffusers ftfy
|
2 |
-
#!pip install -q --upgrade transformers==4.25.1 diffusers ftfy
|
3 |
-
#!pip install accelerate -q
|
4 |
-
|
5 |
from base64 import b64encode
|
6 |
-
|
7 |
-
import numpy
|
8 |
import torch
|
9 |
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
|
10 |
-
from huggingface_hub import notebook_login
|
11 |
|
12 |
-
# For video display:
|
13 |
-
from IPython.display import HTML
|
14 |
from matplotlib import pyplot as plt
|
15 |
from pathlib import Path
|
16 |
from PIL import Image
|
@@ -18,57 +11,51 @@ from torch import autocast
|
|
18 |
from torchvision import transforms as tfms
|
19 |
from tqdm.auto import tqdm
|
20 |
from transformers import CLIPTextModel, CLIPTokenizer, logging
|
21 |
-
import
|
22 |
-
|
23 |
-
|
24 |
|
25 |
-
|
26 |
logging.set_verbosity_error()
|
27 |
|
28 |
-
# Set device
|
29 |
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
|
30 |
|
31 |
-
#
|
32 |
-
|
33 |
-
|
34 |
|
35 |
-
# Load
|
36 |
-
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae") #,use_auth_token=MY_TOKEN)
|
37 |
-
|
38 |
-
# Load the tokenizer and text encoder to tokenize and encode the text.
|
39 |
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
|
40 |
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
|
41 |
|
42 |
-
#
|
43 |
-
unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder=
|
44 |
|
45 |
-
#
|
46 |
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
|
47 |
|
48 |
-
#
|
49 |
vae = vae.to(torch_device)
|
50 |
text_encoder = text_encoder.to(torch_device)
|
51 |
unet = unet.to(torch_device)
|
52 |
|
53 |
-
|
|
|
|
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
with torch.no_grad():
|
58 |
-
latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling
|
59 |
-
return 0.18215 * latent.latent_dist.sample()
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
|
68 |
-
images = (image * 255).round().astype("uint8")
|
69 |
-
pil_images = [Image.fromarray(image) for image in images]
|
70 |
-
return pil_images
|
71 |
|
|
|
|
|
|
|
|
|
72 |
|
73 |
def get_output_embeds(input_embeddings):
|
74 |
# CLIP's text model uses causal mask, so we prepare it here:
|
@@ -95,177 +82,92 @@ def get_output_embeds(input_embeddings):
|
|
95 |
# And now they're ready!
|
96 |
return output
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
width = 512 # default width of Stable Diffusion
|
103 |
-
num_inference_steps = 7 # Number of denoising steps
|
104 |
-
guidance_scale = 7.5 # Scale for classifier-free guidance
|
105 |
-
generator = torch.manual_seed(64) # Seed generator to create the inital latent noise
|
106 |
-
batch_size = 1
|
107 |
-
|
108 |
-
max_length = text_input.input_ids.shape[-1]
|
109 |
-
uncond_input = tokenizer(
|
110 |
-
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
|
111 |
-
)
|
112 |
-
with torch.no_grad():
|
113 |
-
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
|
114 |
-
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
115 |
-
|
116 |
-
# Prep Scheduler
|
117 |
-
scheduler.set_timesteps(num_inference_steps)
|
118 |
-
|
119 |
-
# Prep latents
|
120 |
-
latents = torch.randn(
|
121 |
-
(batch_size, unet.config.in_channels, height // 8, width // 8),
|
122 |
-
generator=generator,
|
123 |
-
)
|
124 |
-
latents = latents.to(torch_device)
|
125 |
-
latents = latents * scheduler.init_noise_sigma
|
126 |
-
|
127 |
-
# Loop
|
128 |
-
for i, t in tqdm(enumerate(scheduler.timesteps)):
|
129 |
-
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
|
130 |
-
latent_model_input = torch.cat([latents] * 2)
|
131 |
-
sigma = scheduler.sigmas[i]
|
132 |
-
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
|
133 |
-
|
134 |
-
# predict the noise residual
|
135 |
-
with torch.no_grad():
|
136 |
-
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
|
137 |
-
|
138 |
-
# perform guidance
|
139 |
-
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
140 |
-
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
141 |
-
|
142 |
-
# compute the previous noisy sample x_t -> x_t-1
|
143 |
-
latents = scheduler.step(noise_pred, t, latents).prev_sample
|
144 |
-
|
145 |
-
return latents_to_pil(latents)[0]
|
146 |
-
|
147 |
-
def ref_loss(images,ref_image):
|
148 |
-
# Reference image
|
149 |
-
error = torch.abs(images - ref_image).mean()
|
150 |
-
return error
|
151 |
-
|
152 |
-
def inference(prompt, style_index):
|
153 |
-
|
154 |
-
styles = ['<snoopy>', '<boot-mjstyle>','<birb-style>','<pop_art>','<ronaldo>','<Thumps_up>']
|
155 |
-
embed = ['snoopy.bin','boot-mjstyle.bin', 'bird_style.bin', 'pop_art.bin','ronaldo.bin','Thumps_up.bin']
|
156 |
|
|
|
157 |
|
158 |
-
|
159 |
-
|
160 |
-
#
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
## Without any Textual Inversion
|
169 |
-
input_ids = text_input.input_ids.to(torch_device)
|
170 |
-
|
171 |
-
# Get token embeddings
|
172 |
-
token_embeddings = token_emb_layer(input_ids)
|
173 |
-
|
174 |
-
# Combine with pos embs
|
175 |
-
input_embeddings = token_embeddings + position_embeddings
|
176 |
-
|
177 |
-
# Feed through to get final output embs
|
178 |
-
modified_output_embeddings = get_output_embeds(input_embeddings)
|
179 |
-
|
180 |
-
# And generate an image with this:
|
181 |
-
image1 = generate_with_embs(modified_output_embeddings,text_input)
|
182 |
-
|
183 |
-
replace_id=269 #replaced dot with Textual Inversion
|
184 |
-
|
185 |
-
## midjourney-style
|
186 |
-
style = styles[style_index]
|
187 |
-
emb = embed[style_index]
|
188 |
-
|
189 |
-
x_embed = torch.load(emb)
|
190 |
-
|
191 |
-
# The new embedding - our special birb word
|
192 |
-
replacement_token_embedding = x_embed[style].to(torch_device)
|
193 |
-
|
194 |
-
# Insert this into the token embeddings
|
195 |
-
token_embeddings[0, torch.where(input_ids[0]==replace_id)] = replacement_token_embedding.to(torch_device)
|
196 |
-
|
197 |
-
# Combine with pos embs
|
198 |
-
input_embeddings = token_embeddings + position_embeddings
|
199 |
-
|
200 |
-
# Feed through to get final output embs
|
201 |
-
modified_output_embeddings = get_output_embeds(input_embeddings)
|
202 |
|
203 |
-
# And generate an image with this:
|
204 |
-
image2 = generate_with_embs(modified_output_embeddings,text_input)
|
205 |
|
206 |
-
|
207 |
|
208 |
-
|
209 |
-
|
|
|
|
|
|
|
210 |
|
211 |
-
|
212 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
|
214 |
-
|
215 |
-
|
216 |
-
|
|
|
217 |
|
218 |
-
|
|
|
|
|
|
|
219 |
|
220 |
-
#
|
221 |
-
|
222 |
|
223 |
-
#
|
224 |
-
|
225 |
|
226 |
-
#
|
227 |
-
|
228 |
|
229 |
-
#
|
230 |
-
|
|
|
231 |
|
232 |
-
ref_latent = pil_to_latent(ref_image)
|
233 |
|
234 |
-
|
235 |
-
|
236 |
-
num_inference_steps = 7 # # Number of denoising steps
|
237 |
-
guidance_scale = 8 # # Scale for classifier-free guidance
|
238 |
-
generator = torch.manual_seed(64) # Seed generator to create the inital latent noise
|
239 |
batch_size = 1
|
240 |
-
blue_loss_scale = 200 #
|
241 |
-
|
242 |
-
# Prep text
|
243 |
-
text_input = tokenizer([prompt], padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
244 |
-
with torch.no_grad():
|
245 |
-
text_embeddings = text_encoder(text_input.input_ids.to(torch_device))[0]
|
246 |
|
247 |
-
# And the uncond. input as before:
|
248 |
-
max_length = text_input.input_ids.shape[-1]
|
249 |
uncond_input = tokenizer(
|
250 |
-
|
251 |
)
|
252 |
with torch.no_grad():
|
253 |
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
|
254 |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
255 |
|
256 |
# Prep Scheduler
|
257 |
-
|
258 |
|
259 |
# Prep latents
|
260 |
latents = torch.randn(
|
261 |
-
|
262 |
-
|
263 |
)
|
264 |
latents = latents.to(torch_device)
|
265 |
latents = latents * scheduler.init_noise_sigma
|
266 |
|
267 |
# Loop
|
268 |
-
for i, t in tqdm(enumerate(scheduler.timesteps)):
|
269 |
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
|
270 |
latent_model_input = torch.cat([latents] * 2)
|
271 |
sigma = scheduler.sigmas[i]
|
@@ -275,63 +177,110 @@ def inference(prompt, style_index):
|
|
275 |
with torch.no_grad():
|
276 |
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
|
277 |
|
278 |
-
# perform
|
279 |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
280 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
|
|
|
281 |
|
282 |
-
|
283 |
-
|
284 |
-
# Requires grad on the latents
|
285 |
-
latents = latents.detach().requires_grad_()
|
286 |
-
|
287 |
-
# Get the predicted x0:
|
288 |
-
# latents_x0 = latents - sigma * noise_pred
|
289 |
-
latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample
|
290 |
-
|
291 |
-
# Decode to image space
|
292 |
-
denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)
|
293 |
-
|
294 |
-
#ref image
|
295 |
-
with torch.no_grad():
|
296 |
-
ref_images = vae.decode((1 / 0.18215) * ref_latent).sample / 2 + 0.5 # range (0, 1)
|
297 |
-
|
298 |
-
# Calculate loss
|
299 |
-
loss = ref_loss(denoised_images,ref_images) * blue_loss_scale
|
300 |
-
|
301 |
-
# Occasionally print it out
|
302 |
-
# if i%10==0:
|
303 |
-
# print(i, 'loss:', loss.item())
|
304 |
-
|
305 |
-
# Get gradient
|
306 |
-
cond_grad = torch.autograd.grad(loss, latents)[0]
|
307 |
|
308 |
-
|
309 |
-
latents = latents.detach() - cond_grad * sigma**2
|
310 |
-
scheduler._step_index = scheduler._step_index - 1
|
311 |
|
|
|
|
|
312 |
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
|
|
|
|
|
|
|
|
|
317 |
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
|
322 |
-
#
|
|
|
|
|
323 |
|
324 |
-
|
325 |
-
|
326 |
-
|
|
|
|
|
327 |
|
328 |
-
|
|
|
329 |
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from base64 import b64encode
|
2 |
+
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
import torch
|
5 |
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
|
|
|
6 |
|
|
|
|
|
7 |
from matplotlib import pyplot as plt
|
8 |
from pathlib import Path
|
9 |
from PIL import Image
|
|
|
11 |
from torchvision import transforms as tfms
|
12 |
from tqdm.auto import tqdm
|
13 |
from transformers import CLIPTextModel, CLIPTokenizer, logging
|
14 |
+
import os
|
15 |
+
import cv2
|
16 |
+
import torchvision.transforms as T
|
17 |
|
18 |
+
torch.manual_seed(1)
|
19 |
logging.set_verbosity_error()
|
20 |
|
|
|
21 |
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
|
22 |
|
23 |
+
# Load the autoencoder
|
24 |
+
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder='vae')
|
|
|
25 |
|
26 |
+
# Load tokenizer and text encoder to tokenize and encode the text
|
|
|
|
|
|
|
27 |
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
|
28 |
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
|
29 |
|
30 |
+
# Unet model for generating latents
|
31 |
+
unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder='unet')
|
32 |
|
33 |
+
# Noise scheduler
|
34 |
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
|
35 |
|
36 |
+
# Move everything to GPU
|
37 |
vae = vae.to(torch_device)
|
38 |
text_encoder = text_encoder.to(torch_device)
|
39 |
unet = unet.to(torch_device)
|
40 |
|
41 |
+
style_files = ['Thumps_up.bin', 'birb_style.bin',
|
42 |
+
'snoopy.bin', 'pop_art.bin',
|
43 |
+
'boot-mjstyle.bin']
|
44 |
|
45 |
+
images_without_loss = []
|
46 |
+
images_with_loss = []
|
|
|
|
|
|
|
47 |
|
48 |
+
seed_values = [8,16,50,80,128]
|
49 |
+
height = 512 # default height of Stable Diffusion
|
50 |
+
width = 512 # default width of Stable Diffusion
|
51 |
+
num_inference_steps = 5 # Number of denoising steps
|
52 |
+
guidance_scale = 7.5 # Scale for classifier-free guidance
|
53 |
+
num_styles = len(style_files)
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
# Prep Scheduler
|
56 |
+
def set_timesteps(scheduler, num_inference_steps):
|
57 |
+
scheduler.set_timesteps(num_inference_steps)
|
58 |
+
scheduler.timesteps = scheduler.timesteps.to(torch.float32) # minor fix to ensure MPS compatibility, fixed in diffusers PR 3925
|
59 |
|
60 |
def get_output_embeds(input_embeddings):
|
61 |
# CLIP's text model uses causal mask, so we prepare it here:
|
|
|
82 |
# And now they're ready!
|
83 |
return output
|
84 |
|
85 |
+
def get_style_embeddings(style_file):
|
86 |
+
style_embed = torch.load(style_file)
|
87 |
+
style_name = list(style_embed.keys())[0]
|
88 |
+
return style_embed[style_name]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
+
import torch
|
91 |
|
92 |
+
def vibrance_loss(image):
|
93 |
+
# Calculate the standard deviation of color channels
|
94 |
+
std_dev = torch.std(image, dim=(2, 3)) # Compute standard deviation over height and width
|
95 |
+
# Calculate the mean standard deviation across the batch
|
96 |
+
mean_std_dev = torch.mean(std_dev)
|
97 |
+
# You can adjust a scale factor to control the strength of vibrance regularization
|
98 |
+
scale_factor = 100.0
|
99 |
+
# Calculate the vibrance loss
|
100 |
+
loss = -scale_factor * mean_std_dev
|
101 |
+
return loss
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
|
|
|
|
103 |
|
104 |
+
from torchvision.transforms import ToTensor
|
105 |
|
106 |
+
def pil_to_latent(input_im):
|
107 |
+
# Single image -> single latent in a batch (so size 1, 4, 64, 64)
|
108 |
+
with torch.no_grad():
|
109 |
+
latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling
|
110 |
+
return 0.18215 * latent.latent_dist.sample()
|
111 |
|
112 |
+
def latents_to_pil(latents):
|
113 |
+
# bath of latents -> list of images
|
114 |
+
latents = (1 / 0.18215) * latents
|
115 |
+
with torch.no_grad():
|
116 |
+
image = vae.decode(latents).sample
|
117 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
118 |
+
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
|
119 |
+
images = (image * 255).round().astype("uint8")
|
120 |
+
pil_images = [Image.fromarray(image) for image in images]
|
121 |
+
return pil_images
|
122 |
|
123 |
+
def additional_guidance(latents, scheduler, noise_pred, t, sigma, custom_loss_fn):
|
124 |
+
#### ADDITIONAL GUIDANCE ###
|
125 |
+
# Requires grad on the latents
|
126 |
+
latents = latents.detach().requires_grad_()
|
127 |
|
128 |
+
# Get the predicted x0:
|
129 |
+
latents_x0 = latents - sigma * noise_pred
|
130 |
+
#print(f"latents: {latents.shape}, noise_pred:{noise_pred.shape}")
|
131 |
+
#latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample
|
132 |
|
133 |
+
# Decode to image space
|
134 |
+
denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)
|
135 |
|
136 |
+
# Calculate loss
|
137 |
+
loss = custom_loss_fn(denoised_images)
|
138 |
|
139 |
+
# Get gradient
|
140 |
+
cond_grad = torch.autograd.grad(loss, latents, allow_unused=False)[0]
|
141 |
|
142 |
+
# Modify the latents based on this gradient
|
143 |
+
latents = latents.detach() - cond_grad * sigma**2
|
144 |
+
return latents, loss
|
145 |
|
|
|
146 |
|
147 |
+
def generate_with_embs(text_embeddings, max_length, random_seed, loss_fn = None):
|
148 |
+
generator = torch.manual_seed(random_seed) # Seed generator to create the inital latent noise
|
|
|
|
|
|
|
149 |
batch_size = 1
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
|
|
|
|
151 |
uncond_input = tokenizer(
|
152 |
+
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
|
153 |
)
|
154 |
with torch.no_grad():
|
155 |
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
|
156 |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
157 |
|
158 |
# Prep Scheduler
|
159 |
+
set_timesteps(scheduler, num_inference_steps)
|
160 |
|
161 |
# Prep latents
|
162 |
latents = torch.randn(
|
163 |
+
(batch_size, unet.in_channels, height // 8, width // 8),
|
164 |
+
generator=generator,
|
165 |
)
|
166 |
latents = latents.to(torch_device)
|
167 |
latents = latents * scheduler.init_noise_sigma
|
168 |
|
169 |
# Loop
|
170 |
+
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
|
171 |
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
|
172 |
latent_model_input = torch.cat([latents] * 2)
|
173 |
sigma = scheduler.sigmas[i]
|
|
|
177 |
with torch.no_grad():
|
178 |
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
|
179 |
|
180 |
+
# perform guidance
|
181 |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
182 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
183 |
+
if loss_fn is not None:
|
184 |
+
if i%2 == 0:
|
185 |
+
latents, custom_loss = additional_guidance(latents, scheduler, noise_pred, t, sigma, loss_fn)
|
186 |
|
187 |
+
# compute the previous noisy sample x_t -> x_t-1
|
188 |
+
latents = scheduler.step(noise_pred, t, latents).prev_sample
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
|
190 |
+
return latents_to_pil(latents)[0]
|
|
|
|
|
191 |
|
192 |
+
def generate_images(prompt, style_num=None, random_seed=41, custom_loss_fn = None):
|
193 |
+
eos_pos = len(prompt.split())+1
|
194 |
|
195 |
+
style_token_embedding = None
|
196 |
+
if style_num:
|
197 |
+
style_token_embedding = get_style_embeddings(style_files[style_num])
|
198 |
|
199 |
+
# tokenize
|
200 |
+
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
201 |
+
max_length = text_input.input_ids.shape[-1]
|
202 |
+
input_ids = text_input.input_ids.to(torch_device)
|
203 |
|
204 |
+
# get token embeddings
|
205 |
+
token_emb_layer = text_encoder.text_model.embeddings.token_embedding
|
206 |
+
token_embeddings = token_emb_layer(input_ids)
|
207 |
|
208 |
+
# Append style token towards the end of the sentence embeddings
|
209 |
+
if style_token_embedding is not None:
|
210 |
+
token_embeddings[-1, eos_pos, :] = style_token_embedding
|
211 |
|
212 |
+
# combine with pos embs
|
213 |
+
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding
|
214 |
+
position_ids = text_encoder.text_model.embeddings.position_ids[:, :77]
|
215 |
+
position_embeddings = pos_emb_layer(position_ids)
|
216 |
+
input_embeddings = token_embeddings + position_embeddings
|
217 |
|
218 |
+
# Feed through to get final output embs
|
219 |
+
modified_output_embeddings = get_output_embeds(input_embeddings)
|
220 |
|
221 |
+
# And generate an image with this:
|
222 |
+
generated_image = generate_with_embs(modified_output_embeddings, max_length, random_seed, custom_loss_fn)
|
223 |
+
return generated_image
|
224 |
+
|
225 |
+
import matplotlib.pyplot as plt
|
226 |
+
|
227 |
+
def display_images_in_rows(images_with_titles, titles):
|
228 |
+
num_images = len(images_with_titles)
|
229 |
+
rows = 5 # Display 5 rows always
|
230 |
+
columns = 1 if num_images == 5 else 2 # Use 1 column if there are 5 images, otherwise 2 columns
|
231 |
+
fig, axes = plt.subplots(rows, columns + 1, figsize=(15, 5 * rows)) # Add an extra column for titles
|
232 |
+
|
233 |
+
for r in range(rows):
|
234 |
+
# Add the title on the extreme left in the middle of each picture
|
235 |
+
axes[r, 0].text(0.5, 0.5, titles[r], ha='center', va='center')
|
236 |
+
axes[r, 0].axis('off')
|
237 |
+
|
238 |
+
# Add "Without Loss" label above the first column and "With Loss" label above the second column (if applicable)
|
239 |
+
if columns == 2:
|
240 |
+
axes[r, 1].set_title("Without Loss", pad=10)
|
241 |
+
axes[r, 2].set_title("With Loss", pad=10)
|
242 |
+
|
243 |
+
for c in range(1, columns + 1):
|
244 |
+
index = r * columns + c - 1
|
245 |
+
if index < num_images:
|
246 |
+
image, _ = images_with_titles[index]
|
247 |
+
axes[r, c].imshow(image)
|
248 |
+
axes[r, c].axis('off')
|
249 |
+
|
250 |
+
return fig
|
251 |
+
# plt.show()
|
252 |
+
|
253 |
+
|
254 |
+
def image_generator(prompt = "dog", loss_function=None):
|
255 |
+
images_without_loss = []
|
256 |
+
images_with_loss = []
|
257 |
+
if loss_function == "Yes":
|
258 |
+
loss_function = vibrance_loss
|
259 |
+
else:
|
260 |
+
loss_function = None
|
261 |
+
|
262 |
+
for i in range(num_styles):
|
263 |
+
generated_img = generate_images(prompt,style_num = i,random_seed = seed_values[i],custom_loss_fn = None)
|
264 |
+
images_without_loss.append(generated_img)
|
265 |
+
if loss_function:
|
266 |
+
generated_img = generate_images(prompt,style_num = i,random_seed = seed_values[i],custom_loss_fn = loss_function)
|
267 |
+
images_with_loss.append(generated_img)
|
268 |
+
|
269 |
+
generated_sd_images = []
|
270 |
+
titles = ["Bird_style", "Boot-mjstyle", "Snoopy Style", "Pop Art Style", "Thumpsup Style"]
|
271 |
+
|
272 |
+
for i in range(len(titles)):
|
273 |
+
generated_sd_images.append((images_without_loss[i], titles[i]))
|
274 |
+
if images_with_loss != []:
|
275 |
+
generated_sd_images.append((images_with_loss[i], titles[i]))
|
276 |
+
|
277 |
+
|
278 |
+
return display_images_in_rows(generated_sd_images, titles)
|
279 |
+
|
280 |
+
description = "Generate an image with a prompt and apply vibrance loss if you wish to. Note that the app is hosted on a cpu and it takes atleast 15 minutes for generating images without loss. Please feel free to clone the space and use it with a GPU after increase the inference steps to more than 10 for better results"
|
281 |
+
|
282 |
+
demo = gr.Interface(image_generator,
|
283 |
+
inputs=[gr.Textbox(label="Enter prompt for generation", type="text", value="dog sitting on a bench"),
|
284 |
+
gr.Radio(["Yes", "No"], value="No" , label="Apply vibrance loss")],
|
285 |
+
outputs=gr.Plot(label="Generated Images"), title = "Stable Diffusion using Textual Inversion", description=description)
|
286 |
+
demo.launch()
|