File size: 4,375 Bytes
7d6d701
9621cc7
7d6d701
6f02f68
 
 
1ad0dcf
 
6f02f68
 
 
 
1ad0dcf
7d6d701
 
 
9ed9edc
7d6d701
c8f85cc
dffbc3f
52f3a4a
6f02f68
752918c
b610816
5917f38
 
6553dbd
9960268
 
 
9ed9edc
2cf5d84
9960268
5917f38
57e6710
8cffc38
57e6710
 
8cffc38
9960268
8cffc38
4f5dd89
 
 
6f02f68
7d6d701
42b515d
88cc842
42b515d
954479c
423b214
2cf5d84
 
96950c8
42b515d
423b214
290e7c0
7d6d701
 
 
2cf5d84
9ed9edc
908ded3
7d6d701
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import gradio as gr
import shutil, openai, os

from langchain.chains import RetrievalQA
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader
from langchain.document_loaders.generic import GenericLoader
from langchain.document_loaders.parsers import OpenAIWhisperParser
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.prompts import PromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma

from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())

#openai.api_key = os.environ["OPENAI_API_KEY"]

template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up 
              an answer. Keep the answer as concise as possible. Always say "🔥 Thanks for using the app, Bernd Straehle." at the end of the answer. 
              {context} Question: {question} Helpful Answer: """

QA_CHAIN_PROMPT = PromptTemplate(input_variables = ["context", "question"], template = template)

YOUTUBE_DIR = "docs/youtube/" 
CHROMA_DIR = "docs/chroma/"

MODEL_NAME = "gpt-4"

def invoke(openai_api_key, youtube_url, process_video, prompt):
    openai.api_key = openai_api_key
    print(process_video)
    if (process_video):
        loader = GenericLoader(YoutubeAudioLoader([youtube_url], YOUTUBE_DIR), OpenAIWhisperParser())
        docs = loader.load()
        shutil.rmtree(YOUTUBE_DIR)
        text_splitter = RecursiveCharacterTextSplitter(chunk_size = 1500, chunk_overlap = 150)
        splits = text_splitter.split_documents(docs)
        vector_db = Chroma.from_documents(documents = splits, embedding = OpenAIEmbeddings(), persist_directory = CHROMA_DIR)
    else:
        vector_db = Chroma(persist_directory = CHROMA_DIR, embedding_function = OpenAIEmbeddings())
    llm = ChatOpenAI(model_name = MODEL_NAME, temperature = 0)
    qa_chain = RetrievalQA.from_chain_type(llm, retriever = vector_db.as_retriever(), return_source_documents = True, chain_type_kwargs = {"prompt": QA_CHAIN_PROMPT})
    result = qa_chain({"query": prompt})
    return result["result"]

description = """<strong>Overview:</strong> The app demonstrates how to use a <strong>Large Language Model</strong> (LLM) with <strong>Retrieval Augmented Generation</strong> 
                 (RAG) on external data (YouTube videos in this case, but could be PDFs, URLs, databases, etc.).\n\n
                 <strong>Instructions:</strong> Enter an OpenAI API key, YouTube URL, and prompt to perform semantic search, sentiment analysis, summarization, 
                 translation, etc. "Process Video" specifies whether or not to perform speech-to-text processing. To ask multiple questions related to the same video, 
                 typically set it to "True" the first time and then to "False". Note that persistence is not guaranteed in the Hugging Face free tier 
                 (the plan is to migrate to AWS S3). The example is a 3:12 min. video about GPT-4 and takes about 20 sec. to process. Try different prompts, for example 
                 "what is gpt-4, answer in german" or "write a poem about gpt-4".\n\n
                 <strong>Technology:</strong> <a href='https://www.gradio.app/'>Gradio</a> UI using <a href='https://platform.openai.com/'>OpenAI</a> API 
                 via AI-first <a href='https://www.langchain.com/'>LangChain</a> toolkit with <a href='https://openai.com/research/whisper'>Whisper</a> (speech-to-text) 
                 and <a href='https://openai.com/research/gpt-4'>GPT-4</a> (LLM) foundation models as well as AI-native 
                 <a href='https://www.trychroma.com/'>Chroma</a> embedding database."""

gr.close_all()
demo = gr.Interface(fn=invoke, 
                    inputs = [gr.Textbox(label = "OpenAI API Key", value = "sk-", lines = 1), gr.Textbox(label = "YouTube URL", value = "https://www.youtube.com/watch?v=--khbXchTeE", lines = 1), gr.Radio([True, False], label="Process Video", value = True), gr.Textbox(label = "Prompt", value = "what is gpt-4", lines = 1)],
                    outputs = [gr.Textbox(label = "Completion", lines = 1)],
                    title = "Generative AI - LLM & RAG",
                    description = description)
demo.launch()