File size: 2,904 Bytes
7d6d701
7ddcfd9
7d6d701
99bbf81
a627434
7ddcfd9
 
eb978fe
7ddcfd9
eb978fe
4b29ed4
eb978fe
7ddcfd9
 
 
 
 
 
 
08b6d98
f6fcf7f
 
 
 
86d2f65
ebcdcac
044c0a3
86d2f65
044c0a3
ebcdcac
044c0a3
7ddcfd9
 
 
1e517cc
acf522c
26b6a5b
ddfaa69
 
 
c6bc22c
12d440a
1e517cc
1283168
9102fcd
99bbf81
7ddcfd9
9294813
99bbf81
ddfaa69
 
 
1a8b52b
ddfaa69
7ddcfd9
9294813
7ddcfd9
1283168
12d440a
7ddcfd9
c2e6078
37ab520
043b829
99bbf81
7ddcfd9
 
 
 
 
 
 
 
9294813
7ddcfd9
 
 
8d60a3f
7d6d701
 
7ddcfd9
7d6d701
bb79bf1
 
99bbf81
 
b7d5b27
5e583de
fd30064
7ddcfd9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import gradio as gr
import os, time

from dotenv import load_dotenv, find_dotenv

from rag import llm_chain, rag_chain, rag_batch
from trace import wandb_trace

_ = load_dotenv(find_dotenv())

RAG_BATCH = False # document loading, splitting, storage

config = {
    "chunk_overlap": 150,       # document splitting
    "chunk_size": 1500,         # document splitting
    "k": 3,                     # document retrieval
    "model_name": "gpt-4-0314", # llm
    "temperature": 0,           # llm
}

RAG_OFF     = "Off"
RAG_CHROMA  = "Chroma"
RAG_MONGODB = "MongoDB"

def invoke(openai_api_key, rag_option, prompt):
    if (openai_api_key == ""):
        raise gr.Error("OpenAI API Key is required.")
    if (rag_option is None):
        raise gr.Error("Retrieval Augmented Generation is required.")
    if (prompt == ""):
        raise gr.Error("Prompt is required.")

    if (RAG_BATCH):
        rag_batch(config)
    
    chain = None
    completion = ""
    result = ""
    generation_info = ""
    llm_output = ""
    cb = ""
    err_msg = ""
    
    try:
        start_time_ms = round(time.time() * 1000)

        if (rag_option == RAG_OFF):
            completion, chain, cb = llm_chain(config, openai_api_key, prompt)
            
            if (completion.generations[0] != None and completion.generations[0][0] != None):
                result = completion.generations[0][0].text
                generation_info = completion.generations[0][0].generation_info

            llm_output = completion.llm_output
        else:
            completion, chain, cb = rag_chain(config, openai_api_key, rag_option, prompt)
            result = completion["result"]
    except Exception as e:
        err_msg = e

        raise gr.Error(e)
    finally:
        end_time_ms = round(time.time() * 1000)
        
        wandb_trace(config,
                    rag_option == RAG_OFF, 
                    prompt, 
                    completion, 
                    result, 
                    generation_info, 
                    llm_output, 
                    chain, 
                    cb, 
                    err_msg, 
                    start_time_ms, 
                    end_time_ms)
    return result

gr.close_all()

demo = gr.Interface(fn=invoke, 
                    inputs = [gr.Textbox(label = "OpenAI API Key", type = "password", lines = 1), 
                              gr.Radio([RAG_OFF, RAG_CHROMA, RAG_MONGODB], label = "Retrieval Augmented Generation", value = RAG_OFF),
                              gr.Textbox(label = "Prompt", value = "What are GPT-4's media capabilities in 5 emojis and 1 sentence?", lines = 1),
                             ],
                    outputs = [gr.Textbox(label = "Completion", lines = 1)],
                    title = "Context-Aware Multimodal Reasoning Application",
                    description = os.environ["DESCRIPTION"])

demo.launch()