File size: 9,556 Bytes
7d6d701
eb978fe
7d6d701
99bbf81
eb978fe
 
 
 
 
 
 
 
 
 
 
 
 
a627434
7d6d701
 
eb978fe
 
 
 
 
d693fc5
eb978fe
 
 
 
 
 
 
 
 
 
 
 
08b6d98
f6fcf7f
 
 
 
eb978fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86d2f65
ebcdcac
044c0a3
86d2f65
044c0a3
ebcdcac
044c0a3
1e517cc
acf522c
26b6a5b
ddfaa69
 
 
12d440a
1e517cc
1283168
9102fcd
99bbf81
eb978fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99bbf81
ddfaa69
 
 
1a8b52b
ddfaa69
1283168
12d440a
c2e6078
37ab520
043b829
99bbf81
eb978fe
8d60a3f
7d6d701
 
 
bb79bf1
 
99bbf81
 
b7d5b27
908ded3
fd30064
eb978fe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import gradio as gr
import openai, os, time, wandb

from dotenv import load_dotenv, find_dotenv
from langchain.chains import LLMChain, RetrievalQA
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import PyPDFLoader, WebBaseLoader
from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader
from langchain.document_loaders.generic import GenericLoader
from langchain.document_loaders.parsers import OpenAIWhisperParser
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.prompts import PromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.vectorstores import MongoDBAtlasVectorSearch
from pymongo import MongoClient
from wandb.sdk.data_types.trace_tree import Trace

_ = load_dotenv(find_dotenv())

PDF_URL       = "https://arxiv.org/pdf/2303.08774.pdf"
WEB_URL       = "https://openai.com/research/gpt-4"
YOUTUBE_URL_1 = "https://www.youtube.com/watch?v=--khbXchTeE"
YOUTUBE_URL_2 = "https://www.youtube.com/watch?v=hdhZwyf24mE"
YOUTUBE_URL_3 = "https://www.youtube.com/watch?v=vw-KWfKwvTQ"

YOUTUBE_DIR = "/data/youtube"
CHROMA_DIR  = "/data/chroma"

MONGODB_ATLAS_CLUSTER_URI = os.environ["MONGODB_ATLAS_CLUSTER_URI"]
MONGODB_DB_NAME           = "langchain_db"
MONGODB_COLLECTION_NAME   = "gpt-4"
MONGODB_INDEX_NAME        = "default"

LLM_CHAIN_PROMPT = PromptTemplate(input_variables = ["question"], template = os.environ["LLM_TEMPLATE"])
RAG_CHAIN_PROMPT = PromptTemplate(input_variables = ["context", "question"], template = os.environ["RAG_TEMPLATE"])

WANDB_API_KEY = os.environ["WANDB_API_KEY"]

RAG_OFF     = "Off"
RAG_CHROMA  = "Chroma"
RAG_MONGODB = "MongoDB"

client = MongoClient(MONGODB_ATLAS_CLUSTER_URI)
collection = client[MONGODB_DB_NAME][MONGODB_COLLECTION_NAME]

config = {
    "chunk_overlap": 150,
    "chunk_size": 1500,
    "k": 3,
    "model_name": "gpt-4-0613",
    "temperature": 0,
}

def document_loading_splitting():
    # Document loading
    docs = []
    
    # Load PDF
    loader = PyPDFLoader(PDF_URL)
    docs.extend(loader.load())
    
    # Load Web
    loader = WebBaseLoader(WEB_URL)
    docs.extend(loader.load())
    
    # Load YouTube
    loader = GenericLoader(YoutubeAudioLoader([YOUTUBE_URL_1,
                                               YOUTUBE_URL_2,
                                               YOUTUBE_URL_3], YOUTUBE_DIR), 
                           OpenAIWhisperParser())
    docs.extend(loader.load())

    # Document splitting
    text_splitter = RecursiveCharacterTextSplitter(chunk_overlap = config["chunk_overlap"],
                                                   chunk_size = config["chunk_size"])
    split_documents = text_splitter.split_documents(docs)
    
    return split_documents

def document_storage_chroma(documents):
    Chroma.from_documents(documents = documents, 
                          embedding = OpenAIEmbeddings(disallowed_special = ()), 
                          persist_directory = CHROMA_DIR)

def document_storage_mongodb(documents):
    MongoDBAtlasVectorSearch.from_documents(documents = documents,
                                            embedding = OpenAIEmbeddings(disallowed_special = ()),
                                            collection = collection,
                                            index_name = MONGODB_INDEX_NAME)

def document_retrieval_chroma(llm, prompt):
    return Chroma(embedding_function = OpenAIEmbeddings(),
                  persist_directory = CHROMA_DIR)

def document_retrieval_mongodb(llm, prompt):
    return MongoDBAtlasVectorSearch.from_connection_string(MONGODB_ATLAS_CLUSTER_URI,
                                                           MONGODB_DB_NAME + "." + MONGODB_COLLECTION_NAME,
                                                           OpenAIEmbeddings(disallowed_special = ()),
                                                           index_name = MONGODB_INDEX_NAME)

def llm_chain(llm, prompt):
    llm_chain = LLMChain(llm = llm, 
                         prompt = LLM_CHAIN_PROMPT, 
                         verbose = False)
    completion = llm_chain.generate([{"question": prompt}])
    return completion, llm_chain

def rag_chain(llm, prompt, db):
    rag_chain = RetrievalQA.from_chain_type(llm, 
                                            chain_type_kwargs = {"prompt": RAG_CHAIN_PROMPT}, 
                                            retriever = db.as_retriever(search_kwargs = {"k": config["k"]}), 
                                            return_source_documents = True,
                                            verbose = False)
    completion = rag_chain({"query": prompt})
    return completion, rag_chain

def wandb_trace(rag_option, prompt, completion, result, generation_info, llm_output, chain, err_msg, start_time_ms, end_time_ms):
    wandb.init(project = "openai-llm-rag")
    
    trace = Trace(
        kind = "chain",
        name = "" if (chain == None) else type(chain).__name__,
        status_code = "success" if (str(err_msg) == "") else "error",
        status_message = str(err_msg),
        metadata = {"chunk_overlap": "" if (rag_option == RAG_OFF) else config["chunk_overlap"],
                    "chunk_size": "" if (rag_option == RAG_OFF) else config["chunk_size"],
                   } if (str(err_msg) == "") else {},
        inputs = {"rag_option": rag_option,
                  "prompt": prompt,
                  "chain_prompt": (str(chain.prompt) if (rag_option == RAG_OFF) else 
                                   str(chain.combine_documents_chain.llm_chain.prompt)),
                  "source_documents": "" if (rag_option == RAG_OFF) else str([doc.metadata["source"] for doc in completion["source_documents"]]),
                 } if (str(err_msg) == "") else {},
        outputs = {"result": result,
                   "generation_info": str(generation_info),
                   "llm_output": str(llm_output),
                   "completion": str(completion),
                  } if (str(err_msg) == "") else {},
        model_dict = {"client": (str(chain.llm.client) if (rag_option == RAG_OFF) else
                                 str(chain.combine_documents_chain.llm_chain.llm.client)),
                      "model_name": (str(chain.llm.model_name) if (rag_option == RAG_OFF) else
                                     str(chain.combine_documents_chain.llm_chain.llm.model_name)),
                      "temperature": (str(chain.llm.temperature) if (rag_option == RAG_OFF) else
                                      str(chain.combine_documents_chain.llm_chain.llm.temperature)),
                      "retriever": ("" if (rag_option == RAG_OFF) else str(chain.retriever)),
                     } if (str(err_msg) == "") else {},
        start_time_ms = start_time_ms,
        end_time_ms = end_time_ms
    )
    
    trace.log("evaluation")
    wandb.finish()

def invoke(openai_api_key, rag_option, prompt):
    if (openai_api_key == ""):
        raise gr.Error("OpenAI API Key is required.")
    if (rag_option is None):
        raise gr.Error("Retrieval Augmented Generation is required.")
    if (prompt == ""):
        raise gr.Error("Prompt is required.")
    
    chain = None
    completion = ""
    result = ""
    generation_info = ""
    llm_output = ""
    err_msg = ""
    
    try:
        start_time_ms = round(time.time() * 1000)

        llm = ChatOpenAI(model_name = config["model_name"], 
                         openai_api_key = openai_api_key, 
                         temperature = config["temperature"])
        
        if (rag_option == RAG_CHROMA):
            #splits = document_loading_splitting()
            #document_storage_chroma(splits)
            
            db = document_retrieval_chroma(llm, prompt)
            completion, chain = rag_chain(llm, prompt, db)
            result = completion["result"]
        elif (rag_option == RAG_MONGODB):
            #splits = document_loading_splitting()
            #document_storage_mongodb(splits)
            
            db = document_retrieval_mongodb(llm, prompt)
            completion, chain = rag_chain(llm, prompt, db)
            result = completion["result"]
        else:
            completion, chain = llm_chain(llm, prompt)
            
            if (completion.generations[0] != None and completion.generations[0][0] != None):
                result = completion.generations[0][0].text
                generation_info = completion.generations[0][0].generation_info

            llm_output = completion.llm_output
    except Exception as e:
        err_msg = e
        raise gr.Error(e)
    finally:
        end_time_ms = round(time.time() * 1000)
        
        wandb_trace(rag_option, prompt, completion, result, generation_info, llm_output, chain, err_msg, start_time_ms, end_time_ms)
    return result

gr.close_all()
demo = gr.Interface(fn=invoke, 
                    inputs = [gr.Textbox(label = "OpenAI API Key", type = "password", lines = 1), 
                              gr.Radio([RAG_OFF, RAG_CHROMA, RAG_MONGODB], label = "Retrieval Augmented Generation", value = RAG_OFF),
                              gr.Textbox(label = "Prompt", value = "What are GPT-4's media capabilities in 5 emojis and 1 sentence?", lines = 1),
                             ],
                    outputs = [gr.Textbox(label = "Completion", lines = 1)],
                    title = "Generative AI - LLM & RAG",
                    description = os.environ["DESCRIPTION"])
demo.launch()