Spaces:
Build error
Build error
import gradio as gr | |
import os, time | |
from dotenv import load_dotenv, find_dotenv | |
from rag import llm_chain, rag_chain, rag_ingestion | |
from trace import trace_wandb | |
_ = load_dotenv(find_dotenv()) | |
RAG_INGESTION = False # load, split, embed, and store documents | |
config = { | |
"k": 3, # retrieve documents | |
"model_name": "gpt-4-0314", # llm | |
"temperature": 0 # llm | |
} | |
RAG_OFF = "Off" | |
RAG_MONGODB = "MongoDB" # serverless | |
RAG_CHROMA = "Chroma" # requires persistent storage (small is $0.01/hour) | |
def invoke(openai_api_key, prompt, rag_option): | |
if (openai_api_key == ""): | |
raise gr.Error("OpenAI API Key is required.") | |
if (prompt == ""): | |
raise gr.Error("Prompt is required.") | |
if (rag_option is None): | |
raise gr.Error("Retrieval Augmented Generation is required.") | |
os.environ["OPENAI_API_KEY"] = openai_api_key | |
if (RAG_INGESTION): | |
rag_ingestion(config) | |
chain = None | |
completion = "" | |
result = "" | |
cb = "" | |
err_msg = "" | |
try: | |
start_time_ms = round(time.time() * 1000) | |
if (rag_option == RAG_OFF): | |
completion, chain, cb = llm_chain(config, prompt) | |
if (completion.generations[0] != None and completion.generations[0][0] != None): | |
result = completion.generations[0][0].text | |
else: | |
completion, chain, cb = rag_chain(config, rag_option, prompt) | |
result = completion["result"] | |
except Exception as e: | |
err_msg = e | |
raise gr.Error(e) | |
finally: | |
end_time_ms = round(time.time() * 1000) | |
trace_wandb(config, | |
rag_option == RAG_OFF, | |
prompt, | |
completion, | |
result, | |
chain, | |
cb, | |
err_msg, | |
start_time_ms, | |
end_time_ms) | |
return result | |
gr.close_all() | |
demo = gr.Interface(fn = invoke, | |
inputs = [gr.Textbox(label = "OpenAI API Key", type = "password", lines = 1), | |
gr.Textbox(label = "Prompt", value = "What are GPT-4's media capabilities in 5 emojis and 1 sentence?", lines = 1), | |
gr.Radio([RAG_OFF, RAG_MONGODB], label = "Retrieval-Augmented Generation", value = RAG_MONGODB)], | |
outputs = [gr.Textbox(label = "Completion", lines = 1)], | |
title = "Context-Aware Reasoning Application", | |
description = os.environ["DESCRIPTION"], | |
examples = [["", "What are GPT-4's media capabilities in 5 emojis and 1 sentence?", RAG_MONGODB], | |
["", "List GPT-4's exam scores and benchmark results.", RAG_MONGODB], | |
["", "Compare GPT-4 to GPT-3.5 in markdown table format.", RAG_MONGODB], | |
["", "Write a Python program that calls the GPT-4 API.", RAG_MONGODB], | |
["", "What is the GPT-4 API's cost and rate limit? Answer in English, Arabic, Chinese, Hindi, and Russian in JSON format.", RAG_MONGODB]], | |
cache_examples = False) | |
demo.launch() |