Spaces:
Build error
Build error
import gradio as gr | |
import openai, os, time | |
from dotenv import load_dotenv, find_dotenv | |
from langchain.chains import LLMChain, RetrievalQA | |
from langchain.chat_models import ChatOpenAI | |
from langchain.document_loaders import PyPDFLoader, WebBaseLoader | |
from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader | |
from langchain.document_loaders.generic import GenericLoader | |
from langchain.document_loaders.parsers import OpenAIWhisperParser | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.prompts import PromptTemplate | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.vectorstores import Chroma | |
from langchain.vectorstores import MongoDBAtlasVectorSearch | |
from pymongo import MongoClient | |
from rag import llm_chain, rag_chain | |
from trace import wandb_trace | |
_ = load_dotenv(find_dotenv()) | |
PDF_URL = "https://arxiv.org/pdf/2303.08774.pdf" | |
WEB_URL = "https://openai.com/research/gpt-4" | |
YOUTUBE_URL_1 = "https://www.youtube.com/watch?v=--khbXchTeE" | |
YOUTUBE_URL_2 = "https://www.youtube.com/watch?v=hdhZwyf24mE" | |
YOUTUBE_URL_3 = "https://www.youtube.com/watch?v=vw-KWfKwvTQ" | |
YOUTUBE_DIR = "/data/youtube" | |
CHROMA_DIR = "/data/chroma" | |
MONGODB_ATLAS_CLUSTER_URI = os.environ["MONGODB_ATLAS_CLUSTER_URI"] | |
MONGODB_DB_NAME = "langchain_db" | |
MONGODB_COLLECTION_NAME = "gpt-4" | |
MONGODB_INDEX_NAME = "default" | |
LLM_CHAIN_PROMPT = PromptTemplate(input_variables = ["question"], template = os.environ["LLM_TEMPLATE"]) | |
RAG_CHAIN_PROMPT = PromptTemplate(input_variables = ["context", "question"], template = os.environ["RAG_TEMPLATE"]) | |
RAG_OFF = "Off" | |
RAG_CHROMA = "Chroma" | |
RAG_MONGODB = "MongoDB" | |
client = MongoClient(MONGODB_ATLAS_CLUSTER_URI) | |
collection = client[MONGODB_DB_NAME][MONGODB_COLLECTION_NAME] | |
config = { | |
"chunk_overlap": 150, | |
"chunk_size": 1500, | |
"k": 3, | |
"model_name": "gpt-4-0613", | |
"temperature": 0, | |
} | |
def document_loading_splitting(): | |
# Document loading | |
docs = [] | |
# Load PDF | |
loader = PyPDFLoader(PDF_URL) | |
docs.extend(loader.load()) | |
# Load Web | |
loader = WebBaseLoader(WEB_URL) | |
docs.extend(loader.load()) | |
# Load YouTube | |
loader = GenericLoader(YoutubeAudioLoader([YOUTUBE_URL_1, | |
YOUTUBE_URL_2, | |
YOUTUBE_URL_3], YOUTUBE_DIR), | |
OpenAIWhisperParser()) | |
docs.extend(loader.load()) | |
# Document splitting | |
text_splitter = RecursiveCharacterTextSplitter(chunk_overlap = config["chunk_overlap"], | |
chunk_size = config["chunk_size"]) | |
split_documents = text_splitter.split_documents(docs) | |
return split_documents | |
def document_storage_chroma(documents): | |
Chroma.from_documents(documents = documents, | |
embedding = OpenAIEmbeddings(disallowed_special = ()), | |
persist_directory = CHROMA_DIR) | |
def document_storage_mongodb(documents): | |
MongoDBAtlasVectorSearch.from_documents(documents = documents, | |
embedding = OpenAIEmbeddings(disallowed_special = ()), | |
collection = collection, | |
index_name = MONGODB_INDEX_NAME) | |
def document_retrieval_chroma(llm, prompt): | |
return Chroma(embedding_function = OpenAIEmbeddings(), | |
persist_directory = CHROMA_DIR) | |
def document_retrieval_mongodb(llm, prompt): | |
return MongoDBAtlasVectorSearch.from_connection_string(MONGODB_ATLAS_CLUSTER_URI, | |
MONGODB_DB_NAME + "." + MONGODB_COLLECTION_NAME, | |
OpenAIEmbeddings(disallowed_special = ()), | |
index_name = MONGODB_INDEX_NAME) | |
def llm_chain(llm, prompt): | |
llm_chain = LLMChain(llm = llm, | |
prompt = LLM_CHAIN_PROMPT, | |
verbose = False) | |
completion = llm_chain.generate([{"question": prompt}]) | |
return completion, llm_chain | |
def rag_chain(llm, prompt, db): | |
rag_chain = RetrievalQA.from_chain_type(llm, | |
chain_type_kwargs = {"prompt": RAG_CHAIN_PROMPT}, | |
retriever = db.as_retriever(search_kwargs = {"k": config["k"]}), | |
return_source_documents = True, | |
verbose = False) | |
completion = rag_chain({"query": prompt}) | |
return completion, rag_chain | |
def invoke(openai_api_key, rag_option, prompt): | |
if (openai_api_key == ""): | |
raise gr.Error("OpenAI API Key is required.") | |
if (rag_option is None): | |
raise gr.Error("Retrieval Augmented Generation is required.") | |
if (prompt == ""): | |
raise gr.Error("Prompt is required.") | |
chain = None | |
completion = "" | |
result = "" | |
generation_info = "" | |
llm_output = "" | |
err_msg = "" | |
try: | |
start_time_ms = round(time.time() * 1000) | |
llm = ChatOpenAI(model_name = config["model_name"], | |
openai_api_key = openai_api_key, | |
temperature = config["temperature"]) | |
if (rag_option == RAG_CHROMA): | |
#splits = document_loading_splitting() | |
#document_storage_chroma(splits) | |
db = document_retrieval_chroma(llm, prompt) | |
completion, chain = rag_chain(llm, prompt, db) | |
result = completion["result"] | |
elif (rag_option == RAG_MONGODB): | |
#splits = document_loading_splitting() | |
#document_storage_mongodb(splits) | |
db = document_retrieval_mongodb(llm, prompt) | |
completion, chain = rag_chain(llm, prompt, db) | |
result = completion["result"] | |
else: | |
completion, chain = llm_chain(llm, prompt) | |
if (completion.generations[0] != None and completion.generations[0][0] != None): | |
result = completion.generations[0][0].text | |
generation_info = completion.generations[0][0].generation_info | |
llm_output = completion.llm_output | |
except Exception as e: | |
err_msg = e | |
raise gr.Error(e) | |
finally: | |
end_time_ms = round(time.time() * 1000) | |
wandb_trace(rag_option, | |
prompt, | |
completion, | |
result, | |
generation_info, | |
llm_output, | |
chain, | |
err_msg, | |
start_time_ms, | |
end_time_ms) | |
return result | |
gr.close_all() | |
demo = gr.Interface(fn=invoke, | |
inputs = [gr.Textbox(label = "OpenAI API Key", type = "password", lines = 1), | |
gr.Radio([RAG_OFF, RAG_CHROMA, RAG_MONGODB], label = "Retrieval Augmented Generation", value = RAG_OFF), | |
gr.Textbox(label = "Prompt", value = "What are GPT-4's media capabilities in 5 emojis and 1 sentence?", lines = 1), | |
], | |
outputs = [gr.Textbox(label = "Completion", lines = 1)], | |
title = "Generative AI - LLM & RAG", | |
description = os.environ["DESCRIPTION"]) | |
demo.launch() |