Spaces:
Build error
Build error
import logging, os, sys | |
from langchain.callbacks import get_openai_callback | |
from langchain.chains import LLMChain, RetrievalQA | |
from langchain.chat_models import ChatOpenAI | |
from langchain.document_loaders import PyPDFLoader, WebBaseLoader | |
from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader | |
from langchain.document_loaders.generic import GenericLoader | |
from langchain.document_loaders.parsers import OpenAIWhisperParser | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.prompts import PromptTemplate | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.vectorstores import Chroma | |
from langchain.vectorstores import MongoDBAtlasVectorSearch | |
from pymongo import MongoClient | |
RAG_CHROMA = "Chroma" | |
RAG_MONGODB = "MongoDB" | |
PDF_URL = "https://arxiv.org/pdf/2303.08774.pdf" | |
WEB_URL = "https://openai.com/research/gpt-4" | |
YOUTUBE_URL_1 = "https://www.youtube.com/watch?v=--khbXchTeE" | |
YOUTUBE_URL_2 = "https://www.youtube.com/watch?v=hdhZwyf24mE" | |
YOUTUBE_DIR = "/data/yt" | |
CHROMA_DIR = "/data/db" | |
MONGODB_ATLAS_CLUSTER_URI = os.environ["MONGODB_ATLAS_CLUSTER_URI"] | |
MONGODB_DB_NAME = "langchain_db" | |
MONGODB_COLLECTION_NAME = "gpt-4" | |
MONGODB_INDEX_NAME = "default" | |
LLM_CHAIN_PROMPT = PromptTemplate( | |
input_variables = ["question"], | |
template = os.environ["LLM_TEMPLATE"]) | |
RAG_CHAIN_PROMPT = PromptTemplate( | |
input_variables = ["context", "question"], | |
template = os.environ["RAG_TEMPLATE"]) | |
logging.basicConfig(stream = sys.stdout, level = logging.INFO) | |
logging.getLogger().addHandler(logging.StreamHandler(stream = sys.stdout)) | |
def load_documents(): | |
docs = [] | |
loader = PyPDFLoader(PDF_URL) | |
docs.extend(loader.load()) | |
#print("docs = " + str(len(docs))) | |
# Web | |
loader = WebBaseLoader(WEB_URL) | |
docs.extend(loader.load()) | |
#print("docs = " + str(len(docs))) | |
# YouTube | |
loader = GenericLoader( | |
YoutubeAudioLoader( | |
[YOUTUBE_URL_1, YOUTUBE_URL_2], | |
YOUTUBE_DIR), | |
OpenAIWhisperParser()) | |
docs.extend(loader.load()) | |
#print("docs = " + str(len(docs))) | |
return docs | |
def split_documents(config, docs): | |
text_splitter = RecursiveCharacterTextSplitter() | |
return text_splitter.split_documents(docs) | |
def store_chroma(chunks): | |
Chroma.from_documents( | |
documents = chunks, | |
embedding = OpenAIEmbeddings(disallowed_special = ()), | |
persist_directory = CHROMA_DIR) | |
def store_mongodb(chunks): | |
client = MongoClient(MONGODB_ATLAS_CLUSTER_URI) | |
collection = client[MONGODB_DB_NAME][MONGODB_COLLECTION_NAME] | |
MongoDBAtlasVectorSearch.from_documents( | |
documents = chunks, | |
embedding = OpenAIEmbeddings(disallowed_special = ()), | |
collection = collection, | |
index_name = MONGODB_INDEX_NAME) | |
def rag_ingestion(config): | |
docs = load_documents() | |
chunks = split_documents(config, docs) | |
store_chroma(chunks) | |
store_mongodb(chunks) | |
def retrieve_chroma(): | |
return Chroma( | |
embedding_function = OpenAIEmbeddings(disallowed_special = ()), | |
persist_directory = CHROMA_DIR) | |
def retrieve_mongodb(): | |
return MongoDBAtlasVectorSearch.from_connection_string( | |
MONGODB_ATLAS_CLUSTER_URI, | |
MONGODB_DB_NAME + "." + MONGODB_COLLECTION_NAME, | |
OpenAIEmbeddings(disallowed_special = ()), | |
index_name = MONGODB_INDEX_NAME) | |
def get_llm(config): | |
return ChatOpenAI( | |
model_name = config["model_name"], | |
temperature = config["temperature"]) | |
def llm_chain(config, prompt): | |
llm_chain = LLMChain( | |
llm = get_llm(config), | |
prompt = LLM_CHAIN_PROMPT) | |
with get_openai_callback() as cb: | |
completion = llm_chain.generate([{"question": prompt}]) | |
return completion, llm_chain, cb | |
def rag_chain(config, rag_option, prompt): | |
llm = get_llm(config) | |
if (rag_option == RAG_CHROMA): | |
db = retrieve_chroma() | |
elif (rag_option == RAG_MONGODB): | |
db = retrieve_mongodb() | |
rag_chain = RetrievalQA.from_chain_type( | |
llm, | |
chain_type_kwargs = {"prompt": RAG_CHAIN_PROMPT, | |
"verbose": True}, | |
retriever = db.as_retriever(search_kwargs = {"k": config["k"]}), | |
return_source_documents = True) | |
with get_openai_callback() as cb: | |
completion = rag_chain({"query": prompt}) | |
return completion, rag_chain, cb |