Spaces:
Build error
Build error
import gradio as gr | |
import json, openai, os, wandb | |
from langchain.chains import LLMChain, RetrievalQA | |
from langchain.chat_models import ChatOpenAI | |
from langchain.document_loaders import PyPDFLoader, WebBaseLoader | |
from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader | |
from langchain.document_loaders.generic import GenericLoader | |
from langchain.document_loaders.parsers import OpenAIWhisperParser | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.prompts import PromptTemplate | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.vectorstores import Chroma | |
from langchain.vectorstores import MongoDBAtlasVectorSearch | |
from pymongo import MongoClient | |
from wandb.sdk.data_types.trace_tree import Trace | |
from dotenv import load_dotenv, find_dotenv | |
_ = load_dotenv(find_dotenv()) | |
WANDB_API_KEY = os.environ["WANDB_API_KEY"] | |
MONGODB_URI = os.environ["MONGODB_ATLAS_CLUSTER_URI"] | |
client = MongoClient(MONGODB_URI) | |
MONGODB_DB_NAME = "langchain_db" | |
MONGODB_COLLECTION_NAME = "gpt-4" | |
MONGODB_COLLECTION = client[MONGODB_DB_NAME][MONGODB_COLLECTION_NAME] | |
MONGODB_INDEX_NAME = "default" | |
config = { | |
"chunk_overlap": 150, | |
"chunk_size": 1500, | |
"k": 3, | |
"model": "gpt-4", | |
"temperature": 0, | |
} | |
template = """If you don't know the answer, just say that you don't know, don't try to make up an answer. Keep the answer as concise as possible. Always say | |
"🧠 Thanks for using the app - Bernd" at the end of the answer. """ | |
llm_template = "Answer the question at the end. " + template + "Question: {question} Helpful Answer: " | |
rag_template = "Use the following pieces of context to answer the question at the end. " + template + "{context} Question: {question} Helpful Answer: " | |
LLM_CHAIN_PROMPT = PromptTemplate(input_variables = ["question"], | |
template = llm_template) | |
RAG_CHAIN_PROMPT = PromptTemplate(input_variables = ["context", "question"], | |
template = rag_template) | |
CHROMA_DIR = "/data/chroma" | |
YOUTUBE_DIR = "/data/youtube" | |
PDF_URL = "https://arxiv.org/pdf/2303.08774.pdf" | |
WEB_URL = "https://openai.com/research/gpt-4" | |
YOUTUBE_URL_1 = "https://www.youtube.com/watch?v=--khbXchTeE" | |
YOUTUBE_URL_2 = "https://www.youtube.com/watch?v=hdhZwyf24mE" | |
YOUTUBE_URL_3 = "https://www.youtube.com/watch?v=vw-KWfKwvTQ" | |
def document_loading_splitting(): | |
# Document loading | |
docs = [] | |
# Load PDF | |
loader = PyPDFLoader(PDF_URL) | |
docs.extend(loader.load()) | |
# Load Web | |
loader = WebBaseLoader(WEB_URL) | |
docs.extend(loader.load()) | |
# Load YouTube | |
loader = GenericLoader(YoutubeAudioLoader([YOUTUBE_URL_1, | |
YOUTUBE_URL_2, | |
YOUTUBE_URL_3], YOUTUBE_DIR), | |
OpenAIWhisperParser()) | |
docs.extend(loader.load()) | |
# Document splitting | |
text_splitter = RecursiveCharacterTextSplitter(chunk_overlap = config["chunk_overlap"], | |
chunk_size = config["chunk_size"]) | |
splits = text_splitter.split_documents(docs) | |
return splits | |
def document_storage_chroma(splits): | |
Chroma.from_documents(documents = splits, | |
embedding = OpenAIEmbeddings(disallowed_special = ()), | |
persist_directory = CHROMA_DIR) | |
def document_storage_mongodb(splits): | |
MongoDBAtlasVectorSearch.from_documents(documents = splits, | |
embedding = OpenAIEmbeddings(disallowed_special = ()), | |
collection = MONGODB_COLLECTION, | |
index_name = MONGODB_INDEX_NAME) | |
def document_retrieval_chroma(llm, prompt): | |
db = Chroma(embedding_function = OpenAIEmbeddings(), | |
persist_directory = CHROMA_DIR) | |
return db | |
def document_retrieval_mongodb(llm, prompt): | |
db = MongoDBAtlasVectorSearch.from_connection_string(MONGODB_URI, | |
MONGODB_DB_NAME + "." + MONGODB_COLLECTION_NAME, | |
OpenAIEmbeddings(disallowed_special = ()), | |
index_name = MONGODB_INDEX_NAME) | |
return db | |
def llm_chain(llm, prompt): | |
llm_chain = LLMChain(llm = llm, prompt = LLM_CHAIN_PROMPT) | |
completion = llm_chain.run({"question": prompt}) | |
return completion | |
def rag_chain(llm, prompt, db): | |
rag_chain = RetrievalQA.from_chain_type(llm, | |
chain_type_kwargs = {"prompt": RAG_CHAIN_PROMPT}, | |
retriever = db.as_retriever(search_kwargs = {"k": config["k"]}), | |
return_source_documents = True) | |
completion = rag_chain({"query": prompt}) | |
return completion | |
def invoke(openai_api_key, rag_option, prompt): | |
if (openai_api_key == ""): | |
raise gr.Error("OpenAI API Key is required.") | |
if (rag_option is None): | |
raise gr.Error("Retrieval Augmented Generation is required.") | |
if (prompt == ""): | |
raise gr.Error("Prompt is required.") | |
wandb.init(project = "openai-llm-rag") | |
completion = "" | |
try: | |
llm = ChatOpenAI(model_name = config["model"], | |
openai_api_key = openai_api_key, | |
temperature = config["temperature"]) | |
if (rag_option == "Chroma"): | |
#splits = document_loading_splitting() | |
#document_storage_chroma(splits) | |
db = document_retrieval_chroma(llm, prompt) | |
completion = rag_chain(llm, prompt, db) | |
completion = completion["result"] | |
elif (rag_option == "MongoDB"): | |
#splits = document_loading_splitting() | |
#document_storage_mongodb(splits) | |
db = document_retrieval_mongodb(llm, prompt) | |
completion = rag_chain(llm, prompt, db) | |
completion = completion["result"] | |
else: | |
completion = llm_chain(llm, prompt) | |
except Exception as e: | |
completion = e | |
raise gr.Error(e) | |
finally: | |
trace = Trace( | |
name="test", | |
kind="chain", | |
#status_code=status, | |
#status_message=status_message, | |
metadata={ | |
"temperature": config["temperature"], | |
#"token_usage": token_usage, | |
#"model_name": model_name, | |
}, | |
#start_time_ms=start_time_ms, | |
#end_time_ms=end_time_ms, | |
#inputs={"system_prompt": system_message, "query": query}, | |
#outputs={"response": response_text}, | |
) | |
trace.log("test") | |
wandb.finish() | |
return completion | |
description = """<strong>Overview:</strong> Context-aware multimodal reasoning application using a <strong>large language model (LLM)</strong> with | |
<strong>retrieval augmented generation (RAG)</strong>. | |
See the <a href='https://huggingface.co/spaces/bstraehle/openai-llm-rag/blob/main/openai-llm-rag.png'>architecture diagram</a>.\n\n | |
<strong>Instructions:</strong> Enter an OpenAI API key and perform text generation use cases on <a href='""" + YOUTUBE_URL_1 + """'>YouTube</a>, | |
<a href='""" + PDF_URL + """'>PDF</a>, and <a href='""" + WEB_URL + """'>web</a> data published after LLM knowledge cutoff (example: GPT-4 data). | |
<ul style="list-style-type:square;"> | |
<li>Set "Retrieval Augmented Generation" to "<strong>Off</strong>" and submit prompt "What is GPT-4?" The <strong>LLM without RAG</strong> does not know the answer.</li> | |
<li>Set "Retrieval Augmented Generation" to "<strong>Chroma</strong>" or "<strong>MongoDB</strong>" and experiment with prompts. The <strong>LLM with RAG</strong> knows the answer:</li> | |
<ol> | |
<li>What are GPT-4's media capabilities in 5 emojis and 1 sentence?</li> | |
<li>List GPT-4's exam scores and benchmark results.</li> | |
<li>Compare GPT-4 to GPT-3.5 in markdown table format.</li> | |
<li>Write a Python program that calls the GPT-4 API.</li> | |
<li>What is the GPT-4 API's cost and rate limit? Answer in English, Arabic, Chinese, Hindi, and Russian in JSON format.</li> | |
</ol> | |
</ul>\n\n | |
<strong>Technology:</strong> <a href='https://www.gradio.app/'>Gradio</a> UI using the <a href='https://openai.com/'>OpenAI</a> API and | |
AI-native <a href='https://www.trychroma.com/'>Chroma</a> embedding database or | |
<a href='https://www.mongodb.com/blog/post/introducing-atlas-vector-search-build-intelligent-applications-semantic-search-ai'>MongoDB</a> vector search. | |
<strong>Speech-to-text</strong> via <a href='https://openai.com/research/whisper'>whisper-1</a> model, <strong>text embedding</strong> via | |
<a href='https://openai.com/blog/new-and-improved-embedding-model'>text-embedding-ada-002</a> model, and <strong>text generation</strong> via | |
<a href='""" + WEB_URL + """'>gpt-4</a> model. Implementation via AI-first <a href='https://www.langchain.com/'>LangChain</a> toolkit. | |
RAG evaluation via <a href='https://wandb.ai/bstraehle'>Weights & Biases</a>.""" | |
gr.close_all() | |
demo = gr.Interface(fn=invoke, | |
inputs = [gr.Textbox(label = "OpenAI API Key", value = "sk-", lines = 1), | |
gr.Radio(["Off", "Chroma", "MongoDB"], label="Retrieval Augmented Generation", value = "Off"), | |
gr.Textbox(label = "Prompt", value = "What is GPT-4?", lines = 1)], | |
outputs = [gr.Textbox(label = "Completion", lines = 1)], | |
title = "Generative AI - LLM & RAG", | |
description = description) | |
demo.launch() |