openai-llm-rag / app.py
bstraehle's picture
Update app.py
f7926b9
raw
history blame
8.46 kB
import gradio as gr
import langchain, openai, os, time, wandb
from langchain.chains import LLMChain, RetrievalQA
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import PyPDFLoader, WebBaseLoader
from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader
from langchain.document_loaders.generic import GenericLoader
from langchain.document_loaders.parsers import OpenAIWhisperParser
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.prompts import PromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.vectorstores import MongoDBAtlasVectorSearch
from pymongo import MongoClient
from wandb.sdk.data_types.trace_tree import Trace
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())
WANDB_API_KEY = os.environ["WANDB_API_KEY"]
MONGODB_URI = os.environ["MONGODB_ATLAS_CLUSTER_URI"]
client = MongoClient(MONGODB_URI)
MONGODB_DB_NAME = "langchain_db"
MONGODB_COLLECTION_NAME = "gpt-4"
MONGODB_COLLECTION = client[MONGODB_DB_NAME][MONGODB_COLLECTION_NAME]
MONGODB_INDEX_NAME = "default"
description = os.environ["DESCRIPTION"]
config = {
"chunk_overlap": 150,
"chunk_size": 1500,
"k": 3,
"model": "gpt-4",
"temperature": 0,
}
langchain.verbose = True
template = """If you don't know the answer, just say that you don't know, don't try to make up an answer. Keep the answer as concise as possible. Always say
"🧠 Thanks for using the app - Bernd" at the end of the answer. """
llm_template = "Answer the question at the end. " + template + "Question: {question} Helpful Answer: "
rag_template = "Use the following pieces of context to answer the question at the end. " + template + "{context} Question: {question} Helpful Answer: "
LLM_CHAIN_PROMPT = PromptTemplate(input_variables = ["question"],
template = llm_template)
RAG_CHAIN_PROMPT = PromptTemplate(input_variables = ["context", "question"],
template = rag_template)
CHROMA_DIR = "/data/chroma"
YOUTUBE_DIR = "/data/youtube"
PDF_URL = "https://arxiv.org/pdf/2303.08774.pdf"
WEB_URL = "https://openai.com/research/gpt-4"
YOUTUBE_URL_1 = "https://www.youtube.com/watch?v=--khbXchTeE"
YOUTUBE_URL_2 = "https://www.youtube.com/watch?v=hdhZwyf24mE"
YOUTUBE_URL_3 = "https://www.youtube.com/watch?v=vw-KWfKwvTQ"
def document_loading_splitting():
# Document loading
docs = []
# Load PDF
loader = PyPDFLoader(PDF_URL)
docs.extend(loader.load())
# Load Web
loader = WebBaseLoader(WEB_URL)
docs.extend(loader.load())
# Load YouTube
loader = GenericLoader(YoutubeAudioLoader([YOUTUBE_URL_1,
YOUTUBE_URL_2,
YOUTUBE_URL_3], YOUTUBE_DIR),
OpenAIWhisperParser())
docs.extend(loader.load())
# Document splitting
text_splitter = RecursiveCharacterTextSplitter(chunk_overlap = config["chunk_overlap"],
chunk_size = config["chunk_size"])
splits = text_splitter.split_documents(docs)
return splits
def document_storage_chroma(splits):
Chroma.from_documents(documents = splits,
embedding = OpenAIEmbeddings(disallowed_special = ()),
persist_directory = CHROMA_DIR)
def document_storage_mongodb(splits):
MongoDBAtlasVectorSearch.from_documents(documents = splits,
embedding = OpenAIEmbeddings(disallowed_special = ()),
collection = MONGODB_COLLECTION,
index_name = MONGODB_INDEX_NAME)
def document_retrieval_chroma(llm, prompt):
db = Chroma(embedding_function = OpenAIEmbeddings(),
persist_directory = CHROMA_DIR)
return db
def document_retrieval_mongodb(llm, prompt):
db = MongoDBAtlasVectorSearch.from_connection_string(MONGODB_URI,
MONGODB_DB_NAME + "." + MONGODB_COLLECTION_NAME,
OpenAIEmbeddings(disallowed_special = ()),
index_name = MONGODB_INDEX_NAME)
return db
def llm_chain(llm, prompt):
llm_chain = LLMChain(llm = llm, prompt = LLM_CHAIN_PROMPT)
completion = llm_chain.run({"question": prompt})
return completion
def rag_chain(llm, prompt, db):
rag_chain = RetrievalQA.from_chain_type(llm,
chain_type_kwargs = {"prompt": RAG_CHAIN_PROMPT},
retriever = db.as_retriever(search_kwargs = {"k": config["k"]}),
return_source_documents = True)
completion = rag_chain({"query": prompt})
return completion
def wandb_trace(rag_option, prompt, prompt_template, result, completion, chain_name, status_msg, start_time_ms, end_time_ms):
wandb.init(project = "openai-llm-rag")
trace = Trace(
name = chain_name,
kind = "chain",
status_code = "SUCCESS" if (str(status_msg) == "") else "ERROR",
status_message = str(status_msg),
metadata={
"chunk_overlap": "" if (rag_option == "Off") else config["chunk_overlap"],
"chunk_size": "" if (rag_option == "Off") else config["chunk_size"],
"k": "" if (rag_option == "Off") else config["k"],
"model": config["model"],
"temperature": config["temperature"],
},
start_time_ms = start_time_ms,
end_time_ms = end_time_ms,
inputs = {"rag_option": rag_option, "prompt": str(prompt), "prompt_template": str(prompt_template)},
outputs = {"result": str(result), "completion": str(completion)},
#model_dict = {"llm": str(llm)}
)
trace.log("test")
wandb.finish()
def invoke(openai_api_key, rag_option, prompt):
if (openai_api_key == ""):
raise gr.Error("OpenAI API Key is required.")
if (rag_option is None):
raise gr.Error("Retrieval Augmented Generation is required.")
if (prompt == ""):
raise gr.Error("Prompt is required.")
completion = ""
result = ""
prompt_template = ""
chain_name = ""
status_msg = ""
try:
start_time_ms = round(time.time() * 1000)
llm = ChatOpenAI(model_name = config["model"],
openai_api_key = openai_api_key,
temperature = config["temperature"])
if (rag_option == "Chroma"):
#splits = document_loading_splitting()
#document_storage_chroma(splits)
db = document_retrieval_chroma(llm, prompt)
completion = rag_chain(llm, prompt, db)
result = completion["result"]
prompt_template = rag_template
chain_name = "RetrievalQA"
elif (rag_option == "MongoDB"):
#splits = document_loading_splitting()
#document_storage_mongodb(splits)
db = document_retrieval_mongodb(llm, prompt)
completion = rag_chain(llm, prompt, db)
result = completion["result"]
prompt_template = rag_template
chain_name = "RetrievalQA"
else:
result = llm_chain(llm, prompt)
prompt_template = llm_template
chain_name = "LLMChain"
except Exception as e:
status_msg = e
raise gr.Error(e)
finally:
end_time_ms = round(time.time() * 1000)
wandb_trace(rag_option, prompt, prompt_template, result, completion, chain_name, status_msg, start_time_ms, end_time_ms)
return result
gr.close_all()
demo = gr.Interface(fn=invoke,
inputs = [gr.Textbox(label = "OpenAI API Key", value = "sk-", lines = 1),
gr.Radio(["Off", "Chroma", "MongoDB"], label="Retrieval Augmented Generation", value = "Off"),
gr.Textbox(label = "Prompt", value = "What is GPT-4?", lines = 1)],
outputs = [gr.Textbox(label = "Completion", lines = 1)],
title = "Generative AI - LLM & RAG",
description = description)
demo.launch()