openai-llm-rag / rag_langchain.py
bstraehle's picture
Update rag_langchain.py
4b4e8c6
import os
from langchain.callbacks import get_openai_callback
from langchain.chains import LLMChain, RetrievalQA
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import PyPDFLoader, WebBaseLoader
from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader
from langchain.document_loaders.generic import GenericLoader
from langchain.document_loaders.parsers import OpenAIWhisperParser
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.prompts import PromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.vectorstores import MongoDBAtlasVectorSearch
from pymongo import MongoClient
from rag_base import BaseRAG
class LangChainRAG(BaseRAG):
MONGODB_DB_NAME = "langchain_db"
CHROMA_DIR = "/data/db"
YOUTUBE_DIR = "/data/yt"
LLM_CHAIN_PROMPT = PromptTemplate(
input_variables = ["question"],
template = os.environ["TEMPLATE"])
RAG_CHAIN_PROMPT = PromptTemplate(
input_variables = ["context", "question"],
template = os.environ["LANGCHAIN_TEMPLATE"])
def load_documents(self):
docs = []
# PDF
loader = PyPDFLoader(self.PDF_URL)
docs.extend(loader.load())
#print("docs = " + str(len(docs)))
# Web
loader = WebBaseLoader(self.WEB_URL)
docs.extend(loader.load())
#print("docs = " + str(len(docs)))
# YouTube
loader = GenericLoader(
YoutubeAudioLoader(
[self.YOUTUBE_URL_1, self.YOUTUBE_URL_2],
self.YOUTUBE_DIR),
OpenAIWhisperParser())
docs.extend(loader.load())
#print("docs = " + str(len(docs)))
return docs
def split_documents(self, config, docs):
text_splitter = RecursiveCharacterTextSplitter(
chunk_overlap = config["chunk_overlap"],
chunk_size = config["chunk_size"]
)
return text_splitter.split_documents(docs)
def store_documents_chroma(self, chunks):
Chroma.from_documents(
documents = chunks,
embedding = OpenAIEmbeddings(disallowed_special = ()), # embed
persist_directory = self.CHROMA_DIR
)
def store_documents_mongodb(self, chunks):
client = MongoClient(self.MONGODB_ATLAS_CLUSTER_URI)
collection = client[self.MONGODB_DB_NAME][self.MONGODB_COLLECTION_NAME]
MongoDBAtlasVectorSearch.from_documents(
documents = chunks,
embedding = OpenAIEmbeddings(disallowed_special = ()),
collection = collection,
index_name = self.MONGODB_INDEX_NAME
)
def ingestion(self, config):
docs = self.load_documents()
chunks = self.split_documents(config, docs)
#self.store_documents_chroma(chunks)
self.store_documents_mongodb(chunks)
def get_vector_store_chroma(self):
return Chroma(
embedding_function = OpenAIEmbeddings(disallowed_special = ()), # embed
persist_directory = self.CHROMA_DIR
)
def get_vector_store_mongodb(self):
return MongoDBAtlasVectorSearch.from_connection_string(
self.MONGODB_ATLAS_CLUSTER_URI,
self.MONGODB_DB_NAME + "." + self.MONGODB_COLLECTION_NAME,
OpenAIEmbeddings(disallowed_special = ()),
index_name = self.MONGODB_INDEX_NAME
)
def get_llm(self, config):
return ChatOpenAI(
model_name = config["model_name"],
temperature = config["temperature"]
)
def llm_chain(self, config, prompt):
llm_chain = LLMChain(
llm = self.get_llm(config),
prompt = self.LLM_CHAIN_PROMPT
)
with get_openai_callback() as callback:
completion = llm_chain.generate([{"question": prompt}])
return completion, callback
def rag_chain(self, config, prompt):
#vector_store = self.get_vector_store_chroma()
vector_store = self.get_vector_store_mongodb()
rag_chain = RetrievalQA.from_chain_type(
self.get_llm(config),
chain_type_kwargs = {"prompt": self.RAG_CHAIN_PROMPT},
retriever = vector_store.as_retriever(search_kwargs = {"k": config["k"]}),
return_source_documents = True
)
with get_openai_callback() as callback:
completion = rag_chain({"query": prompt})
return completion, callback