bstraehle commited on
Commit
01207a6
·
1 Parent(s): 4f6d2e3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -2
app.py CHANGED
@@ -48,13 +48,13 @@ def invoke(openai_api_key, youtube_url, process_video, prompt):
48
  return result["result"]
49
 
50
  description = """<strong>Overview:</strong> The app demonstrates how to use a <strong>Large Language Model</strong> (LLM) with <strong>Retrieval Augmented Generation</strong>
51
- (RAG) on external data (YouTube videos in this case, but it could be PDFs, URLs, databases, or other structured/unstructured and private/public
52
  <a href='https://raw.githubusercontent.com/bstraehle/ai-ml-dl/c38b224c196fc984aab6b6cc6bdc666f8f4fbcff/langchain/document-loaders.png'>data sources</a>).\n\n
53
  <strong>Instructions:</strong> Enter an OpenAI API key and perform LLM use cases (semantic search, sentiment analysis, summarization, translation, etc.)
54
  <ul style="list-style-type:square;">
55
  <li>Set "Process Video" to "False" and submit prompt "what is gpt-4". The LLM <strong>without</strong> RAG does not know the answer.</li>
56
  <li>Set "Process Video" to "True" and submit prompt "what is gpt-4". The LLM <strong>with</strong> RAG knows the answer.</li>
57
- <li>Experiment with different prompts, for example "what is gpt-4, answer in german" or "write a haiku about gpt-4".</li>
58
  </ul>
59
  In a production system processing external data would be done in a batch process, while prompting is done in a user interaction.\n\n
60
  <strong>Technology:</strong> <a href='https://www.gradio.app/'>Gradio</a> UI using <a href='https://platform.openai.com/'>OpenAI</a> API
 
48
  return result["result"]
49
 
50
  description = """<strong>Overview:</strong> The app demonstrates how to use a <strong>Large Language Model</strong> (LLM) with <strong>Retrieval Augmented Generation</strong>
51
+ (RAG) on external data (YouTube videos in this case, but it could be PDFs, URLs, databases, or other structured/unstructured private/public
52
  <a href='https://raw.githubusercontent.com/bstraehle/ai-ml-dl/c38b224c196fc984aab6b6cc6bdc666f8f4fbcff/langchain/document-loaders.png'>data sources</a>).\n\n
53
  <strong>Instructions:</strong> Enter an OpenAI API key and perform LLM use cases (semantic search, sentiment analysis, summarization, translation, etc.)
54
  <ul style="list-style-type:square;">
55
  <li>Set "Process Video" to "False" and submit prompt "what is gpt-4". The LLM <strong>without</strong> RAG does not know the answer.</li>
56
  <li>Set "Process Video" to "True" and submit prompt "what is gpt-4". The LLM <strong>with</strong> RAG knows the answer.</li>
57
+ <li>Set "Process Video" to "False" and experiment with different prompts, for example "what is gpt-4, answer in german" or "write a haiku about gpt-4".</li>
58
  </ul>
59
  In a production system processing external data would be done in a batch process, while prompting is done in a user interaction.\n\n
60
  <strong>Technology:</strong> <a href='https://www.gradio.app/'>Gradio</a> UI using <a href='https://platform.openai.com/'>OpenAI</a> API