Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
-
import openai, os
|
3 |
|
4 |
from langchain.chains import RetrievalQA
|
5 |
from langchain.chat_models import ChatOpenAI
|
@@ -30,10 +30,7 @@ YOUTUBE_URL = "https://www.youtube.com/watch?v=--khbXchTeE"
|
|
30 |
MODEL_NAME = "gpt-4"
|
31 |
|
32 |
def invoke(openai_api_key, use_rag, prompt):
|
33 |
-
|
34 |
-
# shutil.rmtree(CHROMA_DIR)
|
35 |
-
# if (os.path.isdir(YOUTUBE_DIR)):
|
36 |
-
# shutil.rmtree(YOUTUBE_DIR)
|
37 |
if (use_rag):
|
38 |
if (os.path.isdir(CHROMA_DIR)):
|
39 |
vector_db = Chroma(persist_directory = CHROMA_DIR, embedding_function = OpenAIEmbeddings())
|
@@ -43,13 +40,13 @@ def invoke(openai_api_key, use_rag, prompt):
|
|
43 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size = 1500, chunk_overlap = 150)
|
44 |
splits = text_splitter.split_documents(docs)
|
45 |
vector_db = Chroma.from_documents(documents = splits, embedding = OpenAIEmbeddings(), persist_directory = CHROMA_DIR)
|
46 |
-
llm =
|
47 |
-
|
48 |
-
result = qa_chain({"query": prompt})
|
49 |
else:
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
53 |
#print(result)
|
54 |
return result["result"]
|
55 |
|
|
|
1 |
import gradio as gr
|
2 |
+
import openai, os
|
3 |
|
4 |
from langchain.chains import RetrievalQA
|
5 |
from langchain.chat_models import ChatOpenAI
|
|
|
30 |
MODEL_NAME = "gpt-4"
|
31 |
|
32 |
def invoke(openai_api_key, use_rag, prompt):
|
33 |
+
llm = ChatOpenAI(model_name = MODEL_NAME, openai_api_key = openai_api_key, temperature = 0)
|
|
|
|
|
|
|
34 |
if (use_rag):
|
35 |
if (os.path.isdir(CHROMA_DIR)):
|
36 |
vector_db = Chroma(persist_directory = CHROMA_DIR, embedding_function = OpenAIEmbeddings())
|
|
|
40 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size = 1500, chunk_overlap = 150)
|
41 |
splits = text_splitter.split_documents(docs)
|
42 |
vector_db = Chroma.from_documents(documents = splits, embedding = OpenAIEmbeddings(), persist_directory = CHROMA_DIR)
|
43 |
+
rag_chain = RetrievalQA.from_chain_type(llm, retriever = vector_db.as_retriever(search_kwargs = {"k": 3}), return_source_documents = True, chain_type_kwargs = {"prompt": QA_CHAIN_PROMPT})
|
44 |
+
result = rag_chain({"query": prompt})
|
|
|
45 |
else:
|
46 |
+
#qa_chain = RetrievalQA.from_chain_type(llm, retriever = None, return_source_documents = True, cchain_type_kwargs = {"prompt": QA_CHAIN_PROMPT})
|
47 |
+
#result = qa_chain({"query": prompt})
|
48 |
+
chain = LLMChain(llm = llm)
|
49 |
+
result = chain({"query": prompt})
|
50 |
#print(result)
|
51 |
return result["result"]
|
52 |
|