bstraehle commited on
Commit
10b081a
·
1 Parent(s): 016e2a5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -4
app.py CHANGED
@@ -44,7 +44,6 @@ def invoke(openai_api_key, use_rag, prompt):
44
  if (os.path.isdir(CHROMA_DIR)):
45
  vector_db = Chroma(embedding_function = OpenAIEmbeddings(),
46
  persist_directory = CHROMA_DIR)
47
- print("2 Load DB")
48
  else:
49
  loader = GenericLoader(YoutubeAudioLoader([YOUTUBE_URL], YOUTUBE_DIR),
50
  OpenAIWhisperParser())
@@ -55,7 +54,6 @@ def invoke(openai_api_key, use_rag, prompt):
55
  vector_db = Chroma.from_documents(documents = splits,
56
  embedding = OpenAIEmbeddings(),
57
  persist_directory = CHROMA_DIR)
58
- print("1 Create DB")
59
  rag_chain = RetrievalQA.from_chain_type(llm,
60
  chain_type_kwargs = {"prompt": RAG_CHAIN_PROMPT},
61
  retriever = vector_db.as_retriever(search_kwargs = {"k": 3}),
@@ -77,8 +75,6 @@ description = """<strong>Overview:</strong> The app demonstrates how to use a La
77
  <li>Set "Retrieval Augmented Generation" to "<strong>True</strong>" and submit prompt "explain gpt-4". The LLM <strong>with</strong> RAG knows the answer.</li>
78
  <li>Experiment with different prompts, for example "explain gpt-4 in german", "list pros and cons of gpt-4", or "write a poem about gpt-4".</li>
79
  </ul>
80
- In a production system, embedding external data is done in a batch process. An idea for a production system is to perform LLM use cases on the
81
- <a href='https://www.youtube.com/playlist?list=PL2yQDdvlhXf_hIzmfHCdbcXj2hS52oP9r'>AWS re:Invent playlist</a> (stand by).\n\n
82
  <strong>Technology:</strong> <a href='https://www.gradio.app/'>Gradio</a> UI using <a href='https://platform.openai.com/'>OpenAI</a> API via AI-first
83
  <a href='https://www.langchain.com/'>LangChain</a> toolkit with <a href='https://openai.com/research/whisper'>Whisper</a> (speech-to-text) and
84
  <a href='https://openai.com/research/gpt-4'>GPT-4</a> (LLM) foundation models as well as AI-native <a href='https://www.trychroma.com/'>Chroma</a>
 
44
  if (os.path.isdir(CHROMA_DIR)):
45
  vector_db = Chroma(embedding_function = OpenAIEmbeddings(),
46
  persist_directory = CHROMA_DIR)
 
47
  else:
48
  loader = GenericLoader(YoutubeAudioLoader([YOUTUBE_URL], YOUTUBE_DIR),
49
  OpenAIWhisperParser())
 
54
  vector_db = Chroma.from_documents(documents = splits,
55
  embedding = OpenAIEmbeddings(),
56
  persist_directory = CHROMA_DIR)
 
57
  rag_chain = RetrievalQA.from_chain_type(llm,
58
  chain_type_kwargs = {"prompt": RAG_CHAIN_PROMPT},
59
  retriever = vector_db.as_retriever(search_kwargs = {"k": 3}),
 
75
  <li>Set "Retrieval Augmented Generation" to "<strong>True</strong>" and submit prompt "explain gpt-4". The LLM <strong>with</strong> RAG knows the answer.</li>
76
  <li>Experiment with different prompts, for example "explain gpt-4 in german", "list pros and cons of gpt-4", or "write a poem about gpt-4".</li>
77
  </ul>
 
 
78
  <strong>Technology:</strong> <a href='https://www.gradio.app/'>Gradio</a> UI using <a href='https://platform.openai.com/'>OpenAI</a> API via AI-first
79
  <a href='https://www.langchain.com/'>LangChain</a> toolkit with <a href='https://openai.com/research/whisper'>Whisper</a> (speech-to-text) and
80
  <a href='https://openai.com/research/gpt-4'>GPT-4</a> (LLM) foundation models as well as AI-native <a href='https://www.trychroma.com/'>Chroma</a>