bstraehle commited on
Commit
24b21f4
·
1 Parent(s): 2301c17

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -12
app.py CHANGED
@@ -41,19 +41,19 @@ def invoke(openai_api_key, use_rag, prompt):
41
  temperature = 0)
42
  if (use_rag):
43
  # Document loading, splitting, and storage
44
- loader = GenericLoader(YoutubeAudioLoader([YOUTUBE_URL_01,
45
- YOUTUBE_URL_02], YOUTUBE_DIR),
46
- OpenAIWhisperParser())
47
- docs = loader.load()
48
- text_splitter = RecursiveCharacterTextSplitter(chunk_overlap = 150,
49
- chunk_size = 1500)
50
- splits = text_splitter.split_documents(docs)
51
- vector_db = Chroma.from_documents(documents = splits,
52
- embedding = OpenAIEmbeddings(),
53
- persist_directory = CHROMA_DIR)
54
  # Document retrieval
55
- #vector_db = Chroma(embedding_function = OpenAIEmbeddings(),
56
- # persist_directory = CHROMA_DIR)
57
  rag_chain = RetrievalQA.from_chain_type(llm,
58
  chain_type_kwargs = {"prompt": RAG_CHAIN_PROMPT},
59
  retriever = vector_db.as_retriever(search_kwargs = {"k": 3}),
 
41
  temperature = 0)
42
  if (use_rag):
43
  # Document loading, splitting, and storage
44
+ #loader = GenericLoader(YoutubeAudioLoader([YOUTUBE_URL_01,
45
+ # YOUTUBE_URL_02], YOUTUBE_DIR),
46
+ # OpenAIWhisperParser())
47
+ #docs = loader.load()
48
+ #text_splitter = RecursiveCharacterTextSplitter(chunk_overlap = 150,
49
+ # chunk_size = 1500)
50
+ #splits = text_splitter.split_documents(docs)
51
+ #vector_db = Chroma.from_documents(documents = splits,
52
+ # embedding = OpenAIEmbeddings(),
53
+ # persist_directory = CHROMA_DIR)
54
  # Document retrieval
55
+ vector_db = Chroma(embedding_function = OpenAIEmbeddings(),
56
+ persist_directory = CHROMA_DIR)
57
  rag_chain = RetrievalQA.from_chain_type(llm,
58
  chain_type_kwargs = {"prompt": RAG_CHAIN_PROMPT},
59
  retriever = vector_db.as_retriever(search_kwargs = {"k": 3}),