Spaces:
Build error
Build error
Update rag_langchain.py
Browse files- rag_langchain.py +5 -11
rag_langchain.py
CHANGED
@@ -15,15 +15,13 @@ from langchain.vectorstores import MongoDBAtlasVectorSearch
|
|
15 |
|
16 |
from pymongo import MongoClient
|
17 |
|
18 |
-
RAG_CHROMA = "Chroma"
|
19 |
-
|
20 |
PDF_URL = "https://arxiv.org/pdf/2303.08774.pdf"
|
21 |
WEB_URL = "https://openai.com/research/gpt-4"
|
22 |
YOUTUBE_URL_1 = "https://www.youtube.com/watch?v=--khbXchTeE"
|
23 |
YOUTUBE_URL_2 = "https://www.youtube.com/watch?v=hdhZwyf24mE"
|
24 |
|
25 |
-
YOUTUBE_DIR = "/data/yt"
|
26 |
CHROMA_DIR = "/data/db"
|
|
|
27 |
|
28 |
MONGODB_ATLAS_CLUSTER_URI = os.environ["MONGODB_ATLAS_CLUSTER_URI"]
|
29 |
MONGODB_DB_NAME = "langchain_db"
|
@@ -120,16 +118,12 @@ def llm_chain(config, prompt):
|
|
120 |
|
121 |
return completion, llm_chain, cb
|
122 |
|
123 |
-
def rag_chain(config,
|
124 |
-
|
125 |
-
|
126 |
-
if (rag_option == RAG_CHROMA):
|
127 |
-
db = retrieve_chroma()
|
128 |
-
else:
|
129 |
-
db = retrieve_mongodb()
|
130 |
|
131 |
rag_chain = RetrievalQA.from_chain_type(
|
132 |
-
|
133 |
chain_type_kwargs = {"prompt": RAG_CHAIN_PROMPT,
|
134 |
"verbose": True},
|
135 |
retriever = db.as_retriever(search_kwargs = {"k": config["k"]}),
|
|
|
15 |
|
16 |
from pymongo import MongoClient
|
17 |
|
|
|
|
|
18 |
PDF_URL = "https://arxiv.org/pdf/2303.08774.pdf"
|
19 |
WEB_URL = "https://openai.com/research/gpt-4"
|
20 |
YOUTUBE_URL_1 = "https://www.youtube.com/watch?v=--khbXchTeE"
|
21 |
YOUTUBE_URL_2 = "https://www.youtube.com/watch?v=hdhZwyf24mE"
|
22 |
|
|
|
23 |
CHROMA_DIR = "/data/db"
|
24 |
+
YOUTUBE_DIR = "/data/yt"
|
25 |
|
26 |
MONGODB_ATLAS_CLUSTER_URI = os.environ["MONGODB_ATLAS_CLUSTER_URI"]
|
27 |
MONGODB_DB_NAME = "langchain_db"
|
|
|
118 |
|
119 |
return completion, llm_chain, cb
|
120 |
|
121 |
+
def rag_chain(config, prompt):
|
122 |
+
#db = retrieve_chroma()
|
123 |
+
db = retrieve_mongodb()
|
|
|
|
|
|
|
|
|
124 |
|
125 |
rag_chain = RetrievalQA.from_chain_type(
|
126 |
+
get_llm(config),
|
127 |
chain_type_kwargs = {"prompt": RAG_CHAIN_PROMPT,
|
128 |
"verbose": True},
|
129 |
retriever = db.as_retriever(search_kwargs = {"k": config["k"]}),
|