bstraehle commited on
Commit
4433d41
·
1 Parent(s): 4951201

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -1
app.py CHANGED
@@ -45,6 +45,7 @@ def invoke(openai_api_key, use_rag, prompt):
45
  if (os.path.isdir(CHROMA_DIR)):
46
  vector_db = Chroma(embedding_function = OpenAIEmbeddings(),
47
  persist_directory = CHROMA_DIR)
 
48
  else:
49
  loader = GenericLoader(YoutubeAudioLoader([YOUTUBE_URL], YOUTUBE_DIR),
50
  OpenAIWhisperParser())
@@ -55,6 +56,7 @@ def invoke(openai_api_key, use_rag, prompt):
55
  vector_db = Chroma.from_documents(documents = splits,
56
  embedding = OpenAIEmbeddings(),
57
  persist_directory = CHROMA_DIR)
 
58
  rag_chain = RetrievalQA.from_chain_type(llm,
59
  chain_type_kwargs = {"prompt": RAG_CHAIN_PROMPT},
60
  retriever = vector_db.as_retriever(search_kwargs = {"k": 3}),
@@ -65,7 +67,7 @@ def invoke(openai_api_key, use_rag, prompt):
65
  else:
66
  chain = LLMChain(llm = llm, prompt = LLM_CHAIN_PROMPT)
67
  result = chain.run({"question": prompt})
68
- print(os.listdir("/data/chroma/"))
69
  return result
70
 
71
  description = """<strong>Overview:</strong> The app demonstrates how to use a Large Language Model (LLM) with Retrieval Augmented Generation (RAG) on external data
 
45
  if (os.path.isdir(CHROMA_DIR)):
46
  vector_db = Chroma(embedding_function = OpenAIEmbeddings(),
47
  persist_directory = CHROMA_DIR)
48
+ print(os.listdir("Load DB"))
49
  else:
50
  loader = GenericLoader(YoutubeAudioLoader([YOUTUBE_URL], YOUTUBE_DIR),
51
  OpenAIWhisperParser())
 
56
  vector_db = Chroma.from_documents(documents = splits,
57
  embedding = OpenAIEmbeddings(),
58
  persist_directory = CHROMA_DIR)
59
+ print(os.listdir("Make DB"))
60
  rag_chain = RetrievalQA.from_chain_type(llm,
61
  chain_type_kwargs = {"prompt": RAG_CHAIN_PROMPT},
62
  retriever = vector_db.as_retriever(search_kwargs = {"k": 3}),
 
67
  else:
68
  chain = LLMChain(llm = llm, prompt = LLM_CHAIN_PROMPT)
69
  result = chain.run({"question": prompt})
70
+ print(os.listdir("/data/chroma/"))
71
  return result
72
 
73
  description = """<strong>Overview:</strong> The app demonstrates how to use a Large Language Model (LLM) with Retrieval Augmented Generation (RAG) on external data