Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -69,26 +69,31 @@ def document_storage_chroma(splits):
|
|
69 |
persist_directory = CHROMA_DIR)
|
70 |
|
71 |
def document_storage_mongodb(splits):
|
|
|
72 |
vector_db = Chroma.from_documents(documents = splits,
|
73 |
embedding = OpenAIEmbeddings(disallowed_special = ()),
|
74 |
persist_directory = CHROMA_DIR)
|
75 |
|
76 |
def document_retrieval_chroma(llm, prompt):
|
77 |
-
|
78 |
persist_directory = CHROMA_DIR)
|
79 |
-
|
80 |
-
chain_type_kwargs = {"prompt": RAG_CHAIN_PROMPT},
|
81 |
-
retriever = vector_db.as_retriever(search_kwargs = {"k": 3}),
|
82 |
-
return_source_documents = True)
|
83 |
-
result = rag_chain({"query": prompt})
|
84 |
-
return result["result"]
|
85 |
|
86 |
def document_retrieval_mongodb(llm, prompt):
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
rag_chain = RetrievalQA.from_chain_type(llm,
|
90 |
chain_type_kwargs = {"prompt": RAG_CHAIN_PROMPT},
|
91 |
-
retriever =
|
92 |
return_source_documents = True)
|
93 |
result = rag_chain({"query": prompt})
|
94 |
return result["result"]
|
@@ -107,13 +112,14 @@ def invoke(openai_api_key, rag_option, prompt):
|
|
107 |
#splits = document_loading_splitting()
|
108 |
if (rag_option == "Chroma"):
|
109 |
#document_storage_chroma(splits)
|
110 |
-
|
|
|
111 |
elif (rag_option == "MongoDB"):
|
112 |
#document_storage_mongodb(splits)
|
113 |
-
|
|
|
114 |
else:
|
115 |
-
|
116 |
-
result = chain.run({"question": prompt})
|
117 |
except Exception as e:
|
118 |
raise gr.Error(e)
|
119 |
return result
|
|
|
69 |
persist_directory = CHROMA_DIR)
|
70 |
|
71 |
def document_storage_mongodb(splits):
|
72 |
+
#TODO
|
73 |
vector_db = Chroma.from_documents(documents = splits,
|
74 |
embedding = OpenAIEmbeddings(disallowed_special = ()),
|
75 |
persist_directory = CHROMA_DIR)
|
76 |
|
77 |
def document_retrieval_chroma(llm, prompt):
|
78 |
+
db = Chroma(embedding_function = OpenAIEmbeddings(),
|
79 |
persist_directory = CHROMA_DIR)
|
80 |
+
return db
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
def document_retrieval_mongodb(llm, prompt):
|
83 |
+
#TODO
|
84 |
+
db = Chroma(embedding_function = OpenAIEmbeddings(),
|
85 |
+
persist_directory = CHROMA_DIR)
|
86 |
+
return db
|
87 |
+
|
88 |
+
def llm_chain(llm, prompt):
|
89 |
+
llm_chain = LLMChain(llm = llm, prompt = LLM_CHAIN_PROMPT)
|
90 |
+
result = llm_chain.run({"question": prompt})
|
91 |
+
return result
|
92 |
+
|
93 |
+
def rag_chain(llm, prompt, db):
|
94 |
rag_chain = RetrievalQA.from_chain_type(llm,
|
95 |
chain_type_kwargs = {"prompt": RAG_CHAIN_PROMPT},
|
96 |
+
retriever = db.as_retriever(search_kwargs = {"k": 3}),
|
97 |
return_source_documents = True)
|
98 |
result = rag_chain({"query": prompt})
|
99 |
return result["result"]
|
|
|
112 |
#splits = document_loading_splitting()
|
113 |
if (rag_option == "Chroma"):
|
114 |
#document_storage_chroma(splits)
|
115 |
+
db = document_retrieval_chroma(llm, prompt)
|
116 |
+
result = rag_chain(llm, prompt, db)
|
117 |
elif (rag_option == "MongoDB"):
|
118 |
#document_storage_mongodb(splits)
|
119 |
+
db = document_retrieval_mongodb(llm, prompt)
|
120 |
+
result = rag_chain(llm, prompt, db)
|
121 |
else:
|
122 |
+
result = llm_chain(llm, prompt)
|
|
|
123 |
except Exception as e:
|
124 |
raise gr.Error(e)
|
125 |
return result
|