bstraehle commited on
Commit
5397e21
·
1 Parent(s): 58e1865

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -2
app.py CHANGED
@@ -51,7 +51,7 @@ def invoke(openai_api_key, use_rag, prompt):
51
  return result["result"]
52
 
53
  description = """<strong>Overview:</strong> The app demonstrates how to use a Large Language Model (LLM) with Retrieval Augmented Generation (RAG) on external data
54
- (in this case YouTube videos, but it could be PDFs, URLs, or other structured/unstructured private/public
55
  <a href='https://raw.githubusercontent.com/bstraehle/ai-ml-dl/c38b224c196fc984aab6b6cc6bdc666f8f4fbcff/langchain/document-loaders.png'>data sources</a>).\n\n
56
  <strong>Instructions:</strong> Enter an OpenAI API key and perform LLM use cases on a <a href='https://www.youtube.com/watch?v=--khbXchTeE'>short video about GPT-4</a>
57
  (semantic search, sentiment analysis, summarization, translation, etc.)
@@ -60,7 +60,7 @@ description = """<strong>Overview:</strong> The app demonstrates how to use a La
60
  <li>Set "Use RAG" to "True" and submit prompt "what is gpt-4". The LLM <strong>with</strong> RAG knows the answer.</li>
61
  <li>Experiment with different prompts, for example "what is gpt-4, answer in german" or "write a haiku about gpt-4".</li>
62
  </ul>
63
- In a production system processing external data would be done in a batch process. An idea for a production system would be to perform LLM use cases on the
64
  <a href='https://www.youtube.com/playlist?list=PL2yQDdvlhXf_hIzmfHCdbcXj2hS52oP9r'>AWS re:Invent playlist</a>.\n\n
65
  <strong>Technology:</strong> <a href='https://www.gradio.app/'>Gradio</a> UI using <a href='https://platform.openai.com/'>OpenAI</a> API via AI-first
66
  <a href='https://www.langchain.com/'>LangChain</a> toolkit with <a href='https://openai.com/research/whisper'>Whisper</a> (speech-to-text) and
 
51
  return result["result"]
52
 
53
  description = """<strong>Overview:</strong> The app demonstrates how to use a Large Language Model (LLM) with Retrieval Augmented Generation (RAG) on external data
54
+ (in this case a YouTube video, but it could be PDFs, URLs, or other structured/unstructured private/public
55
  <a href='https://raw.githubusercontent.com/bstraehle/ai-ml-dl/c38b224c196fc984aab6b6cc6bdc666f8f4fbcff/langchain/document-loaders.png'>data sources</a>).\n\n
56
  <strong>Instructions:</strong> Enter an OpenAI API key and perform LLM use cases on a <a href='https://www.youtube.com/watch?v=--khbXchTeE'>short video about GPT-4</a>
57
  (semantic search, sentiment analysis, summarization, translation, etc.)
 
60
  <li>Set "Use RAG" to "True" and submit prompt "what is gpt-4". The LLM <strong>with</strong> RAG knows the answer.</li>
61
  <li>Experiment with different prompts, for example "what is gpt-4, answer in german" or "write a haiku about gpt-4".</li>
62
  </ul>
63
+ In a production system, processing external data would be done in a batch process. An idea for a production system would be to perform LLM use cases on the
64
  <a href='https://www.youtube.com/playlist?list=PL2yQDdvlhXf_hIzmfHCdbcXj2hS52oP9r'>AWS re:Invent playlist</a>.\n\n
65
  <strong>Technology:</strong> <a href='https://www.gradio.app/'>Gradio</a> UI using <a href='https://platform.openai.com/'>OpenAI</a> API via AI-first
66
  <a href='https://www.langchain.com/'>LangChain</a> toolkit with <a href='https://openai.com/research/whisper'>Whisper</a> (speech-to-text) and