Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -31,8 +31,10 @@ def invoke(openai_api_key, youtube_url, process_video, prompt):
|
|
31 |
openai.api_key = openai_api_key
|
32 |
if (process_video):
|
33 |
if (os.path.isdir(CHROMA_DIR)):
|
|
|
34 |
shutil.rmtree(CHROMA_DIR)
|
35 |
if (os.path.isdir(YOUTUBE_DIR)):
|
|
|
36 |
shutil.rmtree(YOUTUBE_DIR)
|
37 |
loader = GenericLoader(YoutubeAudioLoader([youtube_url], YOUTUBE_DIR), OpenAIWhisperParser())
|
38 |
docs = loader.load()
|
@@ -40,6 +42,10 @@ def invoke(openai_api_key, youtube_url, process_video, prompt):
|
|
40 |
splits = text_splitter.split_documents(docs)
|
41 |
vector_db = Chroma.from_documents(documents = splits, embedding = OpenAIEmbeddings(), persist_directory = CHROMA_DIR)
|
42 |
else:
|
|
|
|
|
|
|
|
|
43 |
vector_db = Chroma(persist_directory = CHROMA_DIR, embedding_function = OpenAIEmbeddings())
|
44 |
llm = ChatOpenAI(model_name = MODEL_NAME, temperature = 0)
|
45 |
qa_chain = RetrievalQA.from_chain_type(llm, retriever = vector_db.as_retriever(), return_source_documents = True, chain_type_kwargs = {"prompt": QA_CHAIN_PROMPT})
|
|
|
31 |
openai.api_key = openai_api_key
|
32 |
if (process_video):
|
33 |
if (os.path.isdir(CHROMA_DIR)):
|
34 |
+
os.listdir(CHROMA_DIR)
|
35 |
shutil.rmtree(CHROMA_DIR)
|
36 |
if (os.path.isdir(YOUTUBE_DIR)):
|
37 |
+
os.listdir(YOUTUBE_DIR)
|
38 |
shutil.rmtree(YOUTUBE_DIR)
|
39 |
loader = GenericLoader(YoutubeAudioLoader([youtube_url], YOUTUBE_DIR), OpenAIWhisperParser())
|
40 |
docs = loader.load()
|
|
|
42 |
splits = text_splitter.split_documents(docs)
|
43 |
vector_db = Chroma.from_documents(documents = splits, embedding = OpenAIEmbeddings(), persist_directory = CHROMA_DIR)
|
44 |
else:
|
45 |
+
if (os.path.isdir(CHROMA_DIR)):
|
46 |
+
os.listdir(CHROMA_DIR)
|
47 |
+
if (os.path.isdir(YOUTUBE_DIR)):
|
48 |
+
os.listdir(YOUTUBE_DIR)
|
49 |
vector_db = Chroma(persist_directory = CHROMA_DIR, embedding_function = OpenAIEmbeddings())
|
50 |
llm = ChatOpenAI(model_name = MODEL_NAME, temperature = 0)
|
51 |
qa_chain = RetrievalQA.from_chain_type(llm, retriever = vector_db.as_retriever(), return_source_documents = True, chain_type_kwargs = {"prompt": QA_CHAIN_PROMPT})
|