bstraehle commited on
Commit
55b9a66
·
1 Parent(s): 7cacaa1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -0
app.py CHANGED
@@ -31,8 +31,10 @@ def invoke(openai_api_key, youtube_url, process_video, prompt):
31
  openai.api_key = openai_api_key
32
  if (process_video):
33
  if (os.path.isdir(CHROMA_DIR)):
 
34
  shutil.rmtree(CHROMA_DIR)
35
  if (os.path.isdir(YOUTUBE_DIR)):
 
36
  shutil.rmtree(YOUTUBE_DIR)
37
  loader = GenericLoader(YoutubeAudioLoader([youtube_url], YOUTUBE_DIR), OpenAIWhisperParser())
38
  docs = loader.load()
@@ -40,6 +42,10 @@ def invoke(openai_api_key, youtube_url, process_video, prompt):
40
  splits = text_splitter.split_documents(docs)
41
  vector_db = Chroma.from_documents(documents = splits, embedding = OpenAIEmbeddings(), persist_directory = CHROMA_DIR)
42
  else:
 
 
 
 
43
  vector_db = Chroma(persist_directory = CHROMA_DIR, embedding_function = OpenAIEmbeddings())
44
  llm = ChatOpenAI(model_name = MODEL_NAME, temperature = 0)
45
  qa_chain = RetrievalQA.from_chain_type(llm, retriever = vector_db.as_retriever(), return_source_documents = True, chain_type_kwargs = {"prompt": QA_CHAIN_PROMPT})
 
31
  openai.api_key = openai_api_key
32
  if (process_video):
33
  if (os.path.isdir(CHROMA_DIR)):
34
+ os.listdir(CHROMA_DIR)
35
  shutil.rmtree(CHROMA_DIR)
36
  if (os.path.isdir(YOUTUBE_DIR)):
37
+ os.listdir(YOUTUBE_DIR)
38
  shutil.rmtree(YOUTUBE_DIR)
39
  loader = GenericLoader(YoutubeAudioLoader([youtube_url], YOUTUBE_DIR), OpenAIWhisperParser())
40
  docs = loader.load()
 
42
  splits = text_splitter.split_documents(docs)
43
  vector_db = Chroma.from_documents(documents = splits, embedding = OpenAIEmbeddings(), persist_directory = CHROMA_DIR)
44
  else:
45
+ if (os.path.isdir(CHROMA_DIR)):
46
+ os.listdir(CHROMA_DIR)
47
+ if (os.path.isdir(YOUTUBE_DIR)):
48
+ os.listdir(YOUTUBE_DIR)
49
  vector_db = Chroma(persist_directory = CHROMA_DIR, embedding_function = OpenAIEmbeddings())
50
  llm = ChatOpenAI(model_name = MODEL_NAME, temperature = 0)
51
  qa_chain = RetrievalQA.from_chain_type(llm, retriever = vector_db.as_retriever(), return_source_documents = True, chain_type_kwargs = {"prompt": QA_CHAIN_PROMPT})